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Abstract
AI-based systems, such as Google’s GenCast, have recently rede-
fined the state of the art in weather forecasting, offering more
accurate and timely predictions of both everyday weather and ex-
treme events. While these systems are on the verge of replacing
traditional meteorological methods, they also introduce new vulner-
abilities into the forecasting process. In this paper, we investigate
this threat and present a novel attack on autoregressive diffusion
models, such as those used in GenCast, capable of manipulating
weather forecasts and fabricating extreme events, including hur-
ricanes, heat waves, and intense rainfall. The attack introduces
subtle perturbations into weather observations that are statistically
indistinguishable from natural noise and change less than 0.1 % of
the measurements—comparable to tampering with data from a sin-
gle meteorological satellite. As modern forecasting integrates data
from nearly a hundred satellites and many other sources operated
by different countries, our findings highlight a critical security risk
with the potential to cause large-scale disruptions and undermine
public trust in weather prediction.

CCS Concepts
• Computing methodologies→Machine learning; • Security
and privacy→ Software and application security.
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1 Introduction
Weather forecasting plays a central role in our daily life, ranging
from choosing appropriate clothing to managing critical opera-
tions in industry. Accurate forecasts, for instance, are essential for
the operation of renewable energy systems, agricultural planning,
aviation operations, and disaster risk mitigation. In recent years,
weather forecasting has seen significant advances, with AI-based
approaches rapidly progressing and now beginning to surpass tra-
ditional numerical weather prediction [1, 25, 34].

Currently, the leading system in this space is GenCast [34], an
autoregressive diffusion model developed by Google. GenCast out-
performs the best traditional medium-range forecasting system,
ENS [13], in both day-to-day accuracy and the prediction of ex-
treme weather events. Due to these advances, major meteorological

institutions, such as the US National Oceanic and Atmospheric Ad-
ministration (NOAA) and the European Centre for Medium-Range
Weather Forecasts (ECMWF), are preparing to incorporate AI-based
approaches into their forecasting systems [17, 26]. With the fre-
quency and intensity of extremeweather events increasing in recent
years, this integration also represents a critical step toward more
effective disaster risk mitigation on a global scale.

However, this shift also introduces a new security risk. Weather
forecasting systems depend on observational data aggregated from
a diverse array of organizations, each operating under different
jurisdictions and guided by distinct institutional incentives [14].
Moreover, the underlying data sources are equally varied, encom-
passing land stations, weather balloons, aircraft, ships, and satel-
lites [16]. This decentralized and fragmented data ecosystem creates
a broad attack surface, offering adversaries multiple opportunities
to tamper with observations. The potential consequences of such
manipulation are severe. Reliable weather warnings, for example,
are indispensable for mitigating harm by enabling timely prepara-
tion and evacuation ahead of extreme events [32].

In this paper, we explore the risk of manipulating AI-based
weather forecasting systems. In particular, we introduce an attack
for creating adversarial observations, subtle changes to measure-
ments that mislead the predictions of a weather model. While our
approach is inspired by prior techniques for generating adversar-
ial inputs [8, 29], it addresses a key challenge specific to weather
models based on autoregressive diffusion, such as GenCast. These
models denoise and condition their input over multiple iterations,
making standard gradient calculation technically infeasible and
limiting the applicability of existing attacks. To overcome this chal-
lenge, we propose a novel approximation of the inference procedure
that enables the computation of effective perturbations, capable of
inducing false weather forecasts, such as fabricating non-existing
extreme events or concealing real ones.

The core idea of our approach is to sample the inference process
of a forecasting model at a tractable number of steps and iteratively
estimate its gradient in reverse. Our approximation uses progres-
sively smaller noise levels in each diffusion step, balancing the
difficulty of the attack by including both small and large noise lev-
els which stabilizes the optimization procedure. To ensure that all
changes remain within acceptable bounds, we apply a projection
operator tailored towards weather observations, which constrains
each measurement variable individually based on its variance. As
weather observations naturally exhibit variance, this projection
ensures that the calculated perturbations remain indistinguishable
from other sources of noise, such as measurement inaccuracies or
inference errors.
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To analyze the efficacy of this attack, we conduct an empirical
evaluation across a broad range of geographic locations and time
periods, using GenCast as the target model. Specifically, we con-
struct adversarial observations to induce extreme events at specific
locations, targeting precipitation (e.g., heavy rain), wind (e.g., hur-
ricanes), or temperature (e.g., heat waves). We observe that altering
just 0.1% of the measurements is sufficient to induce false extreme
events and, consequently, trigger early warning systems in practice.
This fraction is smaller than that corresponding to the input from
a single polar-orbiting satellite. Nearly one hundred of these satel-
lites are currently operated by different countries with partially
conflicting political interests. Furthermore, we demonstrate that
an attacker can suppress actual extreme events, hindering timely
preparations and potentially resulting in the loss of human lives.
For example, we alter the predicted path of Hurricane Katrina (2005)
to make it appear as though it would not strike New Orleans.

Our findings reveal a novel security threat that could erode trust
in weather forecasting and have severe real-world consequences.
As a potential defense, we investigate whether adversarial obser-
vations can be detected under theoretically ideal conditions. We
find that detection success rates remain low (<3.1%), indicating
that detection-based strategies are unlikely to be effective in prac-
tice. Given that certifiably robust models are not yet available for
weather forecasting, we argue that large-scale deployment of AI-
based weather models should be delayed unless the underlying data
sources can be fully trusted.

Contributions. In summary, we make the following major contri-
butions in this work:

• Attack on weather forecasting.We present the first attack tar-
geting AI-based weather forecasting. Our attack is capable
of creating adversarial observations that induce mislead-
ing predictions, such as non-existing extreme events, while
remaining indistinguishable from natural noise.

• Novel attack algorithm. We propose a new algorithm for
generating adversarial inputs for autoregressive diffusion
models. The algorithm gradually approximates the infer-
ence process of weather prediction, achieving higher suc-
cess rates than any existing attack.

• Comprehensive evaluation.We demonstrate the threat of ad-
versarial observations by creating fake extreme events for a
wide range of locations and time periods for the current best
AI model GenCast. Additionally, we show that an attacker
can suppress accurate extreme weather predictions.

To foster further research on the robustness of AI-based weather
forecasting and to ensure the reproducibility of our experiments,
we make our code and artifacts publicly available at https://github.
com/mlsec-group/adversarial-observations. We also provide links
to the considered weather datasets and models.

Roadmap. We provide a brief introduction to weather forecasting
in Section 2 before we present our attack in Section 3. Our empirical
analysis is provided in Section 4, andwe investigate the detectability
of the attack in Section 5. We discuss the consequences of our
findings and provide recommendations in Section 6. Finally, we
review related work in Section 7 and conclude in Section 8.

2 Weather Forecasting
The goal of weather forecasting is to predict future weather condi-
tions based on past observations. In this work, we focus on global
weather forecasting, which is concerned with predicting weather
patterns across the entire planet. To this end, the global weather
state of the atmosphere, X ∈ R |𝑊 |× |𝑉 | , is represented as a grid
of nodes𝑊 distributed across the globe. Each node encodes a set
of real-valued variables 𝑉 corresponding to key meteorological
factors, such as temperature, wind speed, and sea level pressure.
By analyzing changes in the weather state over time, it becomes
possible to estimate future conditions on the grid with varying
degrees of confidence. Such forecasts underpin a wide range of
practical applications, from predicting the output of solar and wind
farms [4] to forecasting the paths of tropical cyclones [40].

Traditionally, weather forecasting has relied on numerical weather
prediction (NWP) systems, which simulate the physical interactions
between atmospheric variables to generate forecasts [11, 13]. These
systems have long been the primary tool for global weather predic-
tion. However, developing such models is highly resource-intensive
and demands extensive domain expertise. Moreover, producing
timely forecasts typically requires access to powerful supercomput-
ers due to the substantial computational workload [2].

2.1 Learning-based Weather Prediction
Machine learning-based weather prediction (MLWP) has recently
emerged as an alternative to traditional forecasting. Rather than
simulating physical processes explicitly, these models learn from
historical weather data to infer atmospheric dynamics. This al-
lows them to capture complex relationships between variables that
reflect underlying physical laws. The latest MLWP systems out-
perform traditional methods in both accuracy and speed, produc-
ing high-quality forecasts in under ten minutes on a single com-
puter [1, 25, 34]. Given their effectiveness, these models are highly
attractive for practical use, and different efforts are underway to
integrate them into operational weather forecasting [17, 26].

GenCast[34] is currently the leading MLWP system, achieving
the best performance [35] in day-to-day forecasting as well as
extreme event prediction. It employs an autoregressive diffusion
model to generate sequential predictions of future weather states.
At its core is a denoising model𝑑 , which iteratively predicts the next
state by denoising an initial estimate conditioned on the current
and previous states of the global grid. This process is guided by the
noise level of the initial estimate, which is gradually reduced over
the denoising steps until the final prediction is obtained.

More formally, given the states X𝑡−1 and X𝑡 , the model 𝑑 gener-
ates the next predicted state X̃𝑡+1 = Z𝑡+1𝑛 by performing𝑛 denoising
steps. To this end, it begins with an initial sample Z𝑡+10 ∼ X(𝜎1)
drawn from a noise distributionX, parameterized by an initial noise
level 𝜎1. Subsequently, each denoising step reduces the noise level
from 𝜎𝑖 to 𝜎𝑖+1 according to the update rule,

Z𝑡+1𝑖+1 = 𝑑 (X𝑡−1,X𝑡 ,Z𝑡+1𝑖 , 𝜎𝑖 , 𝜎𝑖+1).

where 𝑑 takes the past two states X𝑡−1 and X𝑡 , the current estimate
Z𝑡+1
𝑖

as well as the respective noise levels 𝜎𝑖 and 𝜎𝑖+1 as input.
This iterative and autoregressive refinement gradually enhances
prediction detail by reducing noise at each step.

https://github.com/mlsec-group/adversarial-observations
https://github.com/mlsec-group/adversarial-observations
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Figure 1: Locations of satellite observations (blue ) and grid
points (gray ) for a single prediction step. The satellite paths
are computed based on the orbital elements of METOP-B, METOP-
C and NOAA 15 as measured by NORAD [22].

Training this model, however, poses a significant challenge: Back-
propagating through all 𝑛 denoising steps is computationally pro-
hibitive. As a remedy, the model is instead trained on individual
denoising steps using:

X̃𝑡+1 = 𝑑 (X𝑡−1,X𝑡 ,Z, 𝜎, 0) Z ∼ X(𝜎), 𝜎 ∼ Σ(0, 1) ,

where Σ(𝑎, 𝑏) is a probability distribution whose quantiles align
with the noise levels 𝜎1, . . . , 𝜎𝑛 , spanning steps 𝑎 ·𝑛 to 𝑏 ·𝑛. During
training, the full noise schedule with parameters 𝑎 = 0 and 𝑏 = 1
is used, thereby approximating the model’s behavior across all 𝑛
diffusion steps.

Due to the random initialization of noise samples in each step,
the prediction process is inherently stochastic. In the context of
weather forecasting, this randomness is not necessarily a limitation.
GenCast harnesses this stochasticity by generating multiple predic-
tions, forming an ensemble that captures a range of plausible future
scenarios. This ensemble-based approach enables uncertainty quan-
tification and significantly enhances the so-called forecast skill—the
ability to make accurate predictions of the global weather state [34].
Interestingly, this randomness makes constructing effective pertur-
bations more difficult than in deterministic models.

2.2 Data Assimilation
Our discussion of weather forecasting still misses a key aspect:
Real-world observations, such as temperature, pressure, and hu-
midity, rarely align exactly with the points of a global grid. Instead,
data from sources nearby the grid points must be integrated to
form a consistent representation of the current weather state. This
process, known as data assimilation in meteorology, is essential for
producing accurate forecasts.

Data assimilation draws on a wide range of sources, from station-
ary observation points such as land stations and sea buoys to mobile
platforms including balloons, aircraft, ships, and satellites [16]. Of
these, satellites contribute by far the largest share, providing nearly
90% of all assimilated data [15]. This dominance stems from the ca-
pability of satellites in polar orbit to scan the entire Earth’s surface
approximately every 12 hours [9] and geostationary satellites pro-
viding a near realtime view of a large area. Due to these capabilities,
several international consortia operate meteorological satellites and
contribute to global data assimilation, such as China’s CMA and
NRSCC with 3 satellites, the US NOAA, NASA and US Navy with

49 satellites, and Europe’s EUMETSAT and ESA with 14 satellites.
As an example, Figure 1 shows measurements of three satellites
within one prediction period and the respective grid points.

Technically, data assimilation involves making an initial estimate
of the current atmospheric state at a grid point, then refining it
through iterative optimization [27]. This process is driven by an
objective that balances two main sources of error:

• Observation error. This error quantifies how closely the
estimated state matches actual observations. For instance,
if the observed surface temperature is 20 °C but a nearby
grid point predicts 0 °C, the large discrepancy results in a
high observation error.

• Background error. This error captures the deviation between
the estimated state and a short-term forecast based on pre-
viously assimilated states. The short-term forecast incorpo-
rates past observational data, thus propagating historical
information into the current estimate.

The assimilated state combines current observations with short-
range forecasts derived from previous states, each of which carries
inherent uncertainty. To account for this uncertainty, it is explic-
itly modeled within the data assimilation process. This typically
involves estimating the noise through the variances of observa-
tion and background errors, which are then used to regularize the
assimilation procedure [16]. In contrast to the randomness in the
GenCast model, this noise plays into the attacker’s hand, as it allows
manipulations to be concealed within the expected uncertainty of
the assimilated data as we show in the following.

3 Adversarial Observations
Thus far, we have outlined how weather forecasting relies on ob-
servational data from numerous sources and is subject to inherent
uncertainty in both data assimilation and inference. Building on this
foundation, we now introduce our attack, which aims to manipulate
forecasts by injecting adversarial observations. Before presenting
the attack, we first describe the underlying threat model.

3.1 Threat Model
We characterize the threat of adversarial observations in terms of
the attacker’s goal, capabilities, and constraints.

Attacker’s goal. We consider a scenario in which an attacker aims
to manipulate forecasts generated by autoregressive diffusion mod-
els, such as those used in GenCast [34]. Potential attack goals range
from causing economic harm by altering regional wind predictions,
to inciting social disruption through fabricated extreme weather
forecasts, and ultimately to causing physical harm by concealing
impending disasters and preventing timely preparation.

Attacker’s capabilities. We assume that the adversary is capable
of slightly manipulating the inputs to the forecasting model, specif-
ically, the grid X assimilated from data of different meteorological
sources (see Section 2). While such manipulations could, in princi-
ple, be introduced at any source, we focus on measurements from
polar-orbiting satellites due to their predominance in the assimila-
tion process—contributing over 90% [15]—and their ability to cover
the entire Earth’s surface within 12 hours.
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Weather satellites are managed by meteorological and space
agencies worldwide, including those operated by the USA, China, In-
dia, Germany, the European Union, Japan, France, and Taiwan [14].
An attacker could compromise satellite data through various means,
including internal sabotage, tamperingwith transmissions, breaches
at ground-based command centers, or by exploiting vulnerabilities
within the satellite systems [33, 43]. Even more concerning, ma-
nipulations could also be deliberately introduced by an operator
as part of a strategic attack against another country. Moreover, we
assume that the adversary has white-box access to the forecasting
model, including full knowledge of its architecture and parameters.
In contrast to other domains, this assumption is plausible, as state-
of-the-art learning models for weather forecasting are generally
open-sourced [e.g., 1, 25, 26, 34], as no significant security concerns
have been raised so far.

Attacker’s constraints. We assume that any manipulation of the
forecasting model’s input is subject to practical constraints. For
instance, control over a single satellite does not permit arbitrary
modifications, as its observations are assimilated alongside data
from numerous other sources. As a result, we assume that the adver-
sary can modify only a small fraction of the values at each node in
the weather state. Note that polar-orbiting satellites pass over each
grid point approximately twice per day, so global perturbations are
surprisingly not a limiting factor in our attack. In addition, manip-
ulations are constrained by mechanisms designed to detect errors.
Since weather forecasting is inherently imprecise, several such
mechanisms are employed to reduce errors in the model’s input as
early as possible. Consequently, manipulations are only effective if
the introduced perturbations remain within the expected variance
of the input variables. In this context, adversaries can exploit the
noisy nature of weather measurements but cannot introduce larger
deviations without risking detection.

To model these constraints, we assume that the adversary can in-
troduce noise with a small standard deviation, denoted by 𝜖 , where
𝜖 is smaller than the expected variance of any variable at the ma-
nipulated grid points. Furthermore, we conservatively assume that
the perturbation must be unbiased, as the adversary can influence
only a limited portion of the collected observational data.

3.2 Attack Methodology
Building on our threat model, we now present our attack strategy
for generating adversarial observations. The core idea is to manipu-
late the estimated state X̃𝑡 at time 𝑡 so that the predicted state X̃𝑡+𝑗

at a later time 𝑡 + 𝑗 aligns with a predefined target. To achieve this,
the attack adds perturbations 𝜹𝑡 and 𝜹𝑡−1 to the observed states X𝑡

and X𝑡−1, respectively, thereby influencing the calculation of X̃𝑡+𝑗

in the subsequent autoregressive iterations. The perturbations are
constrained to be unbiased and limited in magnitude, with standard
deviations not exceeding a threshold 𝜖 .

Objective function. Formally, the objective can be defined through
an adversarial loss functionA, which measures the distance from a
selected target and is minimized by the attacker using the (approxi-
mated) inference function 𝑓 of the MLWP system. In the case of
GenCast, this function encapsulates the entire prediction procedure
across multiple noise levels and time steps.

To model the constrained perturbations, we define a per-variable
mean 𝜇𝑣 and standard deviation 𝜎𝑣 for each variable 𝑣 ∈ 𝑉 , which
the perturbations must satisfy. These parameters allow us to con-
strain both the direction and the variability of the adversarial influ-
ence. Combining these elements, we arrive at the following opti-
mization problem:

arg min
𝜹𝑡 ,𝜹𝑡−1

A
(
𝑓 (X𝑡 + 𝜹𝑡 ,X𝑡−1 + 𝜹𝑡−1, 𝑗, 𝑛)

)
subject to ∀𝑣 ∈ 𝑉 : 𝜇𝑣 = 0 ∧ 𝜎𝑣 ≤ 𝜖,

where 𝑗 is the lead time for the forecast and 𝑛 the number of con-
sidered noise levels used within 𝑓 .

Decomposing the adversarial loss. The function A captures the
complex task of manipulating forecasts in a single expression, ren-
dering direct optimization challenging. To address this, we decom-
pose A into two modular components, A = V ◦ S. The spatial
function S specifies the geographic region of interest, while the
variable function V extracts the relevant meteorological target
within that region. This structured formulation provides a flexible
and unified optimization framework, capable of representing a wide
range of targets—from fabricating extreme winds to concealing gen-
uine rainfall anywhere on the globe.

To illustrate the utility of this decomposition, let us consider the
following definition of the adversarial loss A:

S : X ↦→
{
X(lat,lon) | lat ∈ [51, 52], lon ∈ [−1, 1]

}
,

V : 𝑅 ↦→ −min
𝑟 ∈𝑅

(√︃
(𝑟u-wind)2 + (𝑟v-wind)2

)
.

In this example, the spatial function S selects all grid points with
latitudes between 51◦ and 52◦ and longitudes between −1◦ and 1◦,
corresponding to the London area. The variable functionV then
computes a scalar value from this region—specifically, negative
minimumwind speed, derived from the eastward (U) and northward
(V) wind components. As a result, the formulated loss function seeks
to maximize the minimum predicted wind speed around London.
More complex objectives can similarly be defined by customizing
the spatial and variable functions.

Approximating the inference function. The diffusion model un-
derlying 𝑓 is inherently non-deterministic, as it generates forecasts
by iteratively denoising samples initialized with random noise. In
the case of GenCast, this process unfolds over 40 steps, making
end-to-end differentiation computationally prohibitive. To mitigate
this, we could adopt an approximation strategy proposed by Liang
et al. [28], in which a single noise level is selected and the sample
is denoised from that point onward.

However, this approximation alone does not fully resolve the
challenge of determining effective perturbations for 𝑓 . First, the
stochastic nature of the diffusion process means that the impact of
a perturbation heavily depends on the specific realization of the
initial noise. Second, the influence of the denoising step varies with
the selected noise level: lower noise levels result in only minor
forecast changes, while higher noise levels permit more substantial
alterations. As a result, the optimization process becomes highly
variable, and sampling only a single the noise level, as proposed
by Liang et al. [28], does not yield reliable perturbations for execut-
ing an attack.
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Sampling multiple noise levels. To improve the approximation
of the inference process, we introduce two key refinements, as
outlined in Algorithm 1. First, rather than selecting a single noise
level, we sample 𝑛 > 1 distinct levels drawn from non-overlapping
intervals across the noise distribution. Second, instead of denoising
in a single step, we perform a sequence of denoising operations:
the process begins with noise sampled at the first level, followed by
iterative denoising through the subsequent levels, and concludes
with a final denoising step from the last level to zero.

Algorithm 1: Our approximation of the autoregressive
diffusion inference process.
Input: inputs X𝑡 ,X𝑡−1, lead time steps 𝑗 , number of steps 𝑛
Output: approximate prediction X̃𝑡+𝑗

1 Z𝑡𝑛,Z𝑡−1
𝑛 ← X𝑡 ,X𝑡−1;

2 for 𝜏 ← 𝑡 + 1 to 𝑡 + 𝑗 do
3 Sample 𝜎0, . . . , 𝜎𝑛−1 ∼ Σ

(
0, 1

𝑛

)
, . . . , Σ

(
𝑛−1
𝑛 , 1

)
;

4 Sample Z𝜏0 ∼ X(𝜎0);
5 for 𝑖 ← 1 to 𝑛 − 1 do
6 Z𝜏

𝑖
← 𝑑 (Z𝜏−2

𝑛 ,Z𝜏−1
𝑛 ,Z𝜏

𝑖−1, 𝜎𝑖−1, 𝜎𝑖 );
7 Z𝜏𝑛 ← 𝑑 (Z𝜏−2

𝑛 ,Z𝜏−1
𝑛 ,Z𝜏

𝑛−1, 𝜎𝑛−1, 0);

8 return Z𝑡+𝑗𝑛 ;

This strategy ensures that each optimization step incorporates
both high and low noise levels, striking a balance between influence
and difficulty. In doing so, our refined approximation more closely
mimics the full inference procedure, which spans the entire range
of noise levels. In particular, lines 3–4 of Algorithm 1 sample from
the aligned distribution Σ and the noise distribution X to generate
an initial estimate. Subsequently, lines 5–7 iteratively refine this
estimate by applying the denoising function 𝑑 across a sequence of
decreasing noise levels 𝜎𝑖 .

Projecting the perturbations. Finally, to ensure that the perturba-
tions remain within the prescribed bounds, we introduce a projec-
tion operator Π, defined as

Π𝜖 (𝜹) = (𝜹 − 𝜇𝑣) ·
min(𝜖, 𝜎𝑣)

𝜎𝑣
.

This operator is applied to the perturbation 𝜹 of each variable 𝑣
across all grid points during optimization. We denote this as Π𝜖 (𝜹),
indicating that the projection is performed independently for each
variable. The projection ensures that the perturbations conform to
the specified per-variable constraints, maintaining the prescribed
mean 𝜇𝑣 and standard deviation 𝜎𝑣 .

Complete attack algorithm. The complete attack procedure, in-
tegrating all components and refinements, is presented in Algo-
rithm 2. The method follows a standard gradient-based framework
for generating adversarial inputs with 𝑁 iterations, leveraging the
approximated inference function (line 4) and applying the projec-
tion operator Π to enforce perturbation constraints (lines 6 and 9).
To improve optimization efficiency, we incorporate momentum into
the gradient updates (line 6) and use a cosine annealing schedule
(line 7) to dynamically adjust the step size throughout the process.

Algorithm 2: Our attack algorithm with 𝑛 approximation
steps of the diffusion process.
Input: attack budget 𝜖 , number of attack steps 𝑁 , lead time

steps 𝑗 , inputs X𝑡 ,X𝑡−1

Output: adversarial perturbation 𝜹𝑡 , 𝜹𝑡−1

1 m0 ← 0;
2 𝜹0 = (𝜹𝑡0, 𝜹

𝑡−1
0 ) ← 0;

3 for 𝑖 ← 1 to 𝑁 do
4 X̃𝑡+𝑗 = 𝑓 (X𝑡 + 𝜹𝑡𝑖−1,X

𝑡−1 + 𝜹𝑡−1
𝑖−1 , 𝑗, 𝑛);

5 g𝑖 ← ∇𝜹𝑖−1A(X̃𝑡+𝑗 );
6 m𝑖 ← 𝛽 ·m𝑖−1 + (1 − 𝛽) · Π1 (g𝑖 );
7 𝛼 ′

𝑖
← 𝜖

𝑁
+ 1

2
(
2𝜖 − 𝜖

𝑁

)
·
(
1 + cos

(
(𝑖−1) ·𝜋

𝑁

))
;

8 𝛼𝑖 ←
𝛼 ′𝑖
(1−𝛽 )𝑖 ;

9 𝜹𝑖 ← Π𝜖 (𝜹𝑖−1 − 𝛼𝑖m𝑖 );
10 return 𝜹𝑡

𝑁
, 𝜹𝑡−1

𝑁

4 Evaluation
We proceed to evaluate the effectiveness of the proposed attack in
generating adversarial observations under real-world conditions. To
this end, we consider two scenarios: (a) fabricating extreme events
and (b) concealing extreme events. That is, we first investigate
whether adversarial observations can reliably induce non-existent
extreme events across various locations and points in time. Second,
we examine whether the accuracy of forecasts for genuine extreme
events can be compromised, for example, by moving their location
or diminishing their intensity.

4.1 Experimental Setup
For all our experiments, we target GenCast [34], the currently lead-
ing MLWP system [35]. Specifically, we use the median prediction
deviation from a GenCast ensemble consisting of five members and
consider a one-degree grid resolution. For our attack, we generate
adversarial observations two days prior to a target prediction time
with 𝑗 = 4, resulting in an attack time offset of two days. We use
𝑁 = 50 iterative optimization steps to ensure that the resulting
deviation remains robust to the stochasticity of the inference pro-
cess. Additionally, we set the number of approximation steps per
iteration to 𝑛 = 2. All experiments were run on server with four
NVIDIA A40 GPUs.

Dataset. Weperform all experiments using the ERA5 dataset [19],
which provides hourly assimilated weather variables across mul-
tiple pressure levels and covers the entire globe. This is the same
dataset on which GenCast was trained. For a single state X this
amounts to approximately > 5M individual variable values, dis-
tributed across 65,160 grid points. We evaluate on data from 2022,
which is the most recent full year that is publicly available as part
of WeatherBench2 [35], the most common benchmark for MLWP
systems.

Extreme weather. Following common practice in meteorology,
we define extreme weather events based on the deviation of a target
variable from its expected value. Specifically, we consider events
exceeding the 99th percentile for three variables: (a) wind speed at
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Figure 2: Resulting mean deviation induced by adversarial observations of different sizes. The average deviation of wind speed,
temperature and precipitation as well as the 90% confidence interval across all target locations and times are shown. The attacker goal is to
achieve the threshold for 99% extreme weather deviations with minimal noise increase.

10 meters above ground, (b) temperature at 2 meters above ground,
and (c) precipitation accumulated over a 12-hour period. That is,
we focus on wind speed, temperature, and precipitation values in
the top 1 % of measurements at each location.

To determine the 99th percentile threshold for each variable, we
analyze all historical weather states available in the ERA5 dataset,
evaluating each target variable individually. We construct a clima-
tological model for each variable, estimating the expected value for
any given day of the year at a specific location by averaging across
all available years. Using this model, we compute the maximum
deviation between the expected and actual values of the variable for
each year and location. We then derive the 99th percentile of these
yearly maxima and average them across all grid points to obtain
thresholds corresponding to the 99% extreme weather deviations.

Attacker setup. For our attack, we assume an adversary capable of
manipulating data from a single polar-orbiting satellite. Under this
scenario, we derive the maximum permissible standard deviation 𝜖
(see Section 3.1). Since the individual contribution of a single satel-
lite cannot be precisely determined, we conservatively approximate
its influence by assuming it is smaller than average: Approximately
100 meteorological satellites contribute to the ECMWF assimilation
system [14], so that, on average, a single satellite accounts for more
than 1% of the total observation error. Since this error is typically
larger than background error, we can set a lower bound on it using
the background error [3]. Specifically, we limit the increase in noise
to just 0.25 % of the standard deviation of the background error.

To map this relative constraint to absolute terms, we estimate the
variance of the background error per year. As previously described,
the background error is defined as the difference between the short-
range forecast from the previous state and the final assimilated state.
We use GenCast to perform a single-step forecast for each of our
evaluation years and compute the difference to the corresponding
assimilated values. Finally, we calculate the average variance across
all grid points and forecasts for each variable. The resulting attack
setup is conservative and clearly underestimates the potential real-
world impact of compromising a single satellite.

4.2 Fabricating Extreme Events
We begin by investigating whether adversarial observations can
trigger extreme weather predictions across different locations and
times. To select target locations, we focus on densely populated ar-
eas. Specifically, we randomly sample 100 sites from the 1,000 most
populous population centers using the Global Human Settlement
Urban Centre Database R2024A [30], which provides up-to-date es-
timates of global population distribution based on satellite imagery
analysis. The selected locations range from mid-sized cities such as
Suez and Leipzig to major metropolitan areas like Los Angeles and
Ho Chi Minh City. For each site, we randomly select a target time
within the evaluation year 2022.

For each of these location–time pairs, we run our attack to induce
extreme deviations in each of the three target weather variables at
the specified location and time, manipulating the observations two
days earlier ( 𝑗 = 4). To evaluate the impact of perturbation strength,
we conduct the attack using logarithmically spaced noise budgets,
starting from 0.02 % and increasing up to the derived maximum of
0.25 %, as discussed in Section 4.1.

Attack performance. The results of this experiment are shown in
Figure 2, displaying the deviations across all target variables. We
observe that adversarial observations consistently induce substan-
tial changes in weather predictions. For each of the three target
variables, the noise required to exceed the deviation threshold re-
mains well below the maximum allowed perturbation of 0.25 %. On
average, triggering extreme weather conditions for temperature
and wind speed requires a noise level of approximately 0.08 %, while
precipitation proves even more sensitive, with the threshold for
extreme weather surpassed at noise levels below 0.05 %.

To put these numbers into perspective, at the maximum permit-
ted noise level of 0.25 %, the attack can increase wind speeds by
30.7m/s—equivalent to 111 km/h—averaged over a 12-hour period.
This average is on par with peak wind speeds typically observed
during a Category 1 hurricane. Similarly, temperatures can be in-
creased by 24.6C, while precipitation can be increased by 221mm
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Figure 3: Mean required noise increase at different locations.
The dashed line shows a linear regression of the required noise. The
mean increase in noise required to fabricate an extreme weather
prediction grows with increasing distance from the equator.

over a 12-hour period—equivalent to 221 l/m2. This level of rainfall
is comparable to that seen during extreme storm events. These
results demonstrate that even minimal perturbations to observa-
tions can lead to substantial shifts in forecast outputs, highlighting
the vulnerability of state-of-the-art weather prediction systems to
adversarial manipulation.

Baselines. Next, we consider the performance of our attack against
two recently proposed methods targeting diffusion models. The
first, AdvDM [28], introduces perturbations directly into the noise
used by image diffusion models. The second, DP-Attacker [8], is
a more recent method designed to target policy diffusion models.
These models generate multi-step policies autoregressively from
an initial vision input, which is more similar to weather prediction
and makes this attack naturally suited to our context. Both baseline
attacks operate using a single sampled noise level for prediction,
consistent with the noise sampling employed during training.

The results are included in Figure 2. Our attack consistently
outperforms the baseline methods across all target variables and
attack budgets. Notably, both baselines fail to reach the extreme
weather thresholds for wind speed and precipitation. Only DP-
Attacker achieves the temperature threshold with an attack budget
below the maximum noise increase of 0.25 %. When comparing
the baselines with our method, we observe that the performance
gap widens as the attack budget increases. This suggests that our
approach scales more efficiently as the budget grows. This advan-
tage is particularly evident in the case of precipitation, where our
method surpasses the baselines by a substantially larger margin.

Susceptibility of different locations. To explore how the choice
of target location influences the attack, we investigate whether
predictions at certain locations are more susceptible to adversarial
observations than others. This is evaluated by calculating the av-
erage increase in noise required at each target location to achieve
extreme weather, averaged over all target variables. We estimate
this by linearly interpolating the induced deviations between the
observed values.

Our findings, illustrated in Figure 3, indicate a relationship be-
tween the required noise and the angular distance from the equator.
Specifically, locations farther from the equator tend to require more
noise to achieve the same level of deviation (𝑝 < 0.05). Still, even
the most impacted areas require less than the maximum possible
noise increase to trigger an extreme weather prediction—indicating
that, although the effect is statistically meaningful, its practical im-
pact is relatively modest. We hypothesize that this trend is linked to
the uneven distribution of grid points near the equator. Because the
grid is constructed with uniform spacing in both latitude and longi-
tude, grid points become increasingly dense toward the poles and
more sparse near the equator. Near-equatorial cells can span over
100𝑘𝑚 (approximately 70miles) per side. To address this imbalance,
one potential solution is to use a mesh derived from an icosahedron
for input to the MLWP, which ensures uniform spacing between
grid points regardless of geographic location. This approach aligns
well with existing infrastructure, as GenCast already employs a six-
times refined icosahedral grid internally. However, this adjustment
alone does not resolve the underlying vulnerability.

Ablation study. To better understand the contribution of indi-
vidual components within our attack methodology, we perform an
ablation study. Specifically, we evaluate three simplified variants:
(1) replacing our improved approximation of the inference process
with the naïve approach used during training, (2) removing opti-
mization enhancements such as cosine annealing and momentum,
and (3) removing both steps simultaneously. Due to computational
constraints, we restrict our evaluation to a subset of 200 out of the
original 1,500 target combinations. For each variant, we compute
the relative deviation in performance compared to the full attack,
quantifying the extent to which each component contributes to
overall effectiveness.

The average relative deviations for the three considered variants
across different target variables are shown in Table 1. Removing
any single component lead to a noticeable drop in performance. For
temperature and wind speed, most of the performance is retained
when only the improved optimization steps are removed. This sug-
gests that the inference approximation plays a more critical role for
these variables. Moreover, removing the inference approximation
alone has a larger impact than removing the improved steps. As
expected, disabling both components results in the largest perfor-
mance reduction. These findings suggest that the interplay between
the inference approximation and the optimization enhancements is
essential to achieving the strong attack effectiveness observed in
our earlier experiments.

Table 1: Mean relative deviation achieved by different abla-
tions. The deviation is relative to the original attack and averaged
across 200 different target combinations.

Method Wind Speed Temperature Precipitation

Ours 100.0 % 100.0 % 100.0 %
w/o steps 89.3 % (-10.7) 93.1 % (- 6.9) 54.4 % (−45.6)
w/o approx 59.3 % (-40.7) 71.6 % (-28.4) 33.9 % (−66.1)
w/o both 56.0 % (-44.0) 62.9 % (-37.1) 18.4 % (−81.6)
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4.3 Concealing Extreme Predictions
Thus far, our analysis has focused on scenarios in which an adver-
sary seeks to fabricate predictions of extreme weather at specific
times and locations. We now turn to a different question: can the at-
tack also undermine genuine forecasts of extreme weather events?
To explore this, we apply our method to three major historical
events—Cyclone Amphan (2020), the 2006 European heat wave, and
Hurricane Katrina (2005). For each event, we simulate an attack by
introducing a maximum noise perturbation of 𝜖 ≤ 0.25 % into the
weather predictions two and a half days before each event reached
peak intensity. This time frame ensures that the extent and location
of the extreme event is predicted correctly without the attack but
could still be realistically manipulated. Differing from the previous
section, the attacker’s goal is not to force extreme predictions at
a single location on the grid but instead reducing the estimated
intensity in an entire region.

Cyclone Amphan. Our first case study focuses on tropical Cy-
clone Amphan, which struck Bangladesh, India, and Sri Lanka in
May 2020, bringing strong winds and heavy rainfall that caused
widespread flooding [23]. Several days prior to landfall, the storm
significantly intensified—whichwas correctly predicted byGenCast—
leading up to intense precipitation across the region as shown in
Figure 4a as the blue shaded area.

We adversarially perturb the observations before this intensifi-
cation, targeting a prediction outcome with minimal precipitation
across the expected storm region. As shown in Figure 4b, the result-
ing forecast entirely suppresses precipitation in the target region.
Notably, when examining the sequence of predicted states between
the perturbed inputs and the forecast, we observe a plausible dissi-
pation of the storm. In this manipulated scenario, the storm releases
rainfall over the ocean and weakens before reaching land. This il-
lustrates how an attacker could convincingly mask an otherwise
accurate forecast of a severe weather event. Crucially, the pertur-
bations as well as the intermediate weather development appear
plausible despite the underlying manipulations.

(a) Original prediction (b) Perturbed prediction
0

20

40

60+

Figure 4: Predicted precipitation at the peak of Cyclone Am-
phan. The forecast is shown (a) without attack and (b) after in-
cluding adversarial observations. The dashed rectangle depicts the
target region of the attack. The precipitation is expressed as mm
over a 12-hour period.

5°C 15°C 25°C 35°C

(a) Original prediction

(b) Perturbed prediction

Figure 5: Predicted temperature at the peak of the European
Heat Wave 2006. The forecast is shown (a) without attack and
(b) after including adversarial observations. The dashed rectangle
depicts the target region of the attack.

European Heat Wave. To assess the ability of out attack to con-
ceal extreme temperatures, we apply it to the European Heat Wave
2006, which set temperature records across many Western Euro-
pean countries [36]. Figure 5 presents the temperature forecasts
before and after the introduction of adversarial observations. As in
the previous case study, the extreme weather signal is effectively
suppressed in the targeted region following the attack.

For this specific attack, we include only the eastern portion of
the heat wave as the target region (indicated by the rectangle in
Figure 5). Despite this narrow focus, extreme temperatures are
also eliminated from adjacent areas. This highlights another key
insight: the impact of adversarial observations extends beyond the
targeted geographic region, plausibly removing the entire extreme
weather event rather than confining the effect locally. Furthermore,
we observe that the altered forecast significantly overshoots the
intended objective of merely hiding the heat wave. Instead, it pre-
dicts unnaturally mild temperatures ranging from 5°C to 10°C in the
regions surrounding the North Sea. This effect could be mitigated
by an attacker by specifying a desired target temperature, instead
of minimizing the predicted temperature.
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Figure 6: Predicted storm path of Hurricane Katrina. The fore-
cast is shown (a) without attack and (b) after including adversarial
observations. The triangles show the target location at which the
wind speed is minimized ( ) and maximized ( ).

Hurricane Katrina. Our final case study evaluates the precision
with which an adversary manipulate the course of a storm , using
Hurricane Katrina as an example. After initially passing Florida, the
storm made its primary landfall near New Orleans [42]. Rather than
suppressing the storm entirely, an adversary may aim to shift the
predicted landfall site to disrupt relevant preparations. To simulate
this, we compute adversarial observations that reduce the predicted
wind speed at the original landfall site while simultaneously in-
creasing it at a new, perturbed location.

The original and perturbed storm tracks are shown in Figure 6.
After introducing the perturbation, the forecast storm path clearly
deviates from the original, no longer indicating landfall near New
Orleans but instead pointing to the manipulated location. The
storms trajectory is determined using the location of lowest sea
level pressure, which serves as a proxy for the storms eye. Notably,
although the optimization process targets wind speed predictions,
it also affects atmospheric pressure, again suggesting broader im-
plications of adversarial interference.

5 Statistical Detection
Our findings demonstrate that AI-based weather forecasting sys-
tems are vulnerable to adversarial observations, underscoring the
need for effective defense mechanisms. In the following, we thus
explore statistical detection as a potential countermeasure to miti-
gate this vulnerability, while broader organizational responses are
discussed in Section 6.

Noisy data is not unique to the adversarial context and in fact a
common and practical challenge for real-world forecasting systems.
To manage this, quality control procedures are implemented that
evaluate the reliability and plausibility of incoming data. These
procedures typically consist of hand-crafted rules involving two
main categories: whether the observations are temporally and spa-
tially consistent, and whether they fall within a reasonable range
of the best estimate of the value [12, 41]. Because these checks are
designed to handle naturally occurring noise and errors, they are
insufficient for detecting the subtle, worst-case perturbations intro-
duced by adversarial observations. We therefore explore whether
more sophisticated statistical tests could identify manipulations
and serve as a defense against this threat.

We evaluate detecting adversarial observations in the context
of a statistical difference to real data. The assimilated state X̄ is
commonly assumed to consist of an unknown underlying ground-
truth value X, to which unbiased Gaussian noise is added by the
background and observation error [3]. We assume a best-case sce-
nario for the defender in which all natural noise can be described
by the background error alone. In this setting, the attacker adds
noise through the adversarial observations and we arrive at

X̄ = X + N(0, 𝜎2
𝑏
) + N (0, 𝜖2) = X + N

(
0, 𝜎2

𝑏
+ 𝜖2

)
,

where 𝜎2
𝑏
denotes the variance of the background error.

Under this formulation, any adversarial perturbation increases
the total noise in the assimilated state. Thus, if the background
error variance is both constant and known exactly, the presence
of an attack can, in principle, always be detected—provided the
sample size is sufficiently large—since the resulting variance will
exhibit a measurable increase. In practice, however, the sample size
is constrained by the number of grid points and the number of
variables per grid point, making detection inherently probabilistic.
Moreover, the variances of background and observation errors are
neither constant nor known with high precision, which makes
detecting small increases in noise particularly challenging.

Despite these limitations, we take a conservative approach to
evaluate the overall detectability of the attack, assuming a best-
case scenario for the defender in which the total error variance
in the assimilated state is both constant and known. Under this
assumption, we can determine whether a given sample shows a
significantly higher variance by applying a simple chi-square test
for the variance [31].

Chi-square test setup. We consider the targets described in Sec-
tion 4 and compute the minimum increase in noise required to
trigger an extreme weather deviation. This is estimated by linearly
interpolating the induced deviations across the evaluated noise
levels. To ensure that each attack can reach the extreme weather
threshold, we do not impose a limit on the maximum noise level.
In such cases, we extrapolate beyond the defined maximum attack
budget. For all attacks, we then estimate the detection probability
using a chi-square test for variance, assuming perfect knowledge
of the expected amount of noise.

Detection results. The detection probabilities are presented in Ta-
ble 2. Adversarial observations from both baselines are consistently
detected using the chi-square test, with rates exceeding 95 % in all
cases—except when temperature is manipulated by the DP-Attacker.
In contrast, our attack results in significantly lower detection prob-
abilities: approximately ≈ 3% for wind speed and temperature, and
just 0.2 % for precipitation.

These results demonstrate that, even under ideal conditions,
the attack would likely evade detection. This conclusion is further
reinforced by the fact that the assumed detection method is not
practically feasible and would likely result in false positives. Con-
sequently, even if such a method were implementable, successful
detection would remain unlikely and establishing definitive proof
of an attack even more so. We therefore conclude that statistical
detection is, unfortunately, not a viable approach for defending
against adversarial perturbations in weather forecasting.
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Table 2: Detectability of different approaches used to fabri-
cate extreme weather deviations. The detectability is measured
using a chi square test for the variance with best-case assumptions
of constant and perfectly known variance of the assimilation error.

Method Wind Speed Temperature Precipitation

AdvDM > 99.99% 99.92% > 99.99%
DP-Attacker 95.04% 45.85% 95.33%
Ours 3.07% 2.96% 0.20%

6 Discussion
Our findings highlight a critical vulnerability in modern weather
forecasting: the integration of machine learning into the prediction
pipeline introduces a new attack surface for manipulation. These
concerns align with prior research that has revealed fundamental
limitations in the robustness of machine learning systems [24, 29].
Even more concerning, as demonstrated in Section 5, such manipu-
lations are likely to remain undetected. While crafting adversarial
observations may exceed the capabilities of typical cybercrimi-
nals, they represent a promising tool for more sophisticated and
well-resourced actors, including nation-state adversaries. In the
following, we thus take a broader perspective on the impact of our
work, beginning with a discussion of its limitations and followed
by recommendations for mitigating the underlying threat.

6.1 Limitations
We begin by outlining the key assumptions underlying our attack
and how they may limit its practical impact.

Access to prediction model. Our attack relies on computing gra-
dients of the model’s outputs, which requires access to the model
weights. Currently, this is a reasonable assumption, as many leading
forecasting models are publicly available [e.g., 1, 25, 26, 34]. How-
ever, it is possible that future models will not be publicly released,
which would significantly hinder an adversary’s ability to carry out
the attack. Black-box attacks on machine learning models typically
require vastly more queries to the target model [5], rendering such
approaches impractical for weather models. This difficulty is further
exacerbated by the operational nature of weather forecasting sys-
tems, which generally produce predictions only once per time step.
For example, conducting 1,000 queries—on the lower end of what is
typical for black-box attacks—against a model with a 12-hour time
step would require approximately 500 days to complete.

To overcome this constraint, black-box methods would likely
need to identify a universal adversarial perturbation that remains
effective across multiple time steps. A more feasible alternative
arises if the attacker has regular access to the output forecasts of
the target system. In this case, a model extraction (or model stealing)
attack could be performed, allowing the adversary to reconstruct an
approximate surrogate of the target model over time. Adversarial
observations could then be crafted using this surrogate in a white-
box setting and transferred to the original system. However, model
extraction would be slow in this case, as the attacker cannot control
the inputs, and thus the process would again require a significant
amount of time.

Continuous attack. In this work, we focus to introduces perturba-
tions at a time step 𝑡 to manipulate the prediction at a future time
step 𝑡 + 𝑗 . In practice, however, weather forecasts are updated con-
tinuously and new predictions are typically made at each time step.
This would require the attack to sustain the manipulations until
reaching the forecast at 𝑡 + 𝑗 . This adds a layer of complexity to the
attack, as the adversary must persist with the attack long enough
for decisions to be influenced by the forecast. This persistence does
not have to be negative and could also work in the adversary’s favor.
Since data assimilation implicitly incorporates the entire history of
observations, it may be possible to exploit this process, potentially
making the attack more effective. Furthermore, if we extend our
view to earlier time steps, smaller adversarial perturbations could
be distributed over a longer period, potentially making the attack
more subtle and harder to detect. We leave this as an interesting
direction for future work.

Problem space. We consider an attack on the assimilated state
on the grid, while an attacker can only control the observations
before data assimilation. Although this might seem to constrain our
attack to the realm of theoretical feature-space attacks, we have en-
sured a practical scenario by considering the problem space across
all points. The influence of the attacker is realistic in adding only
noise and the derived constraint is both conservative and faithful
to real-world constraints. Furthermore, our statistical detection is
not only inspired by real-world quality control procedures, but
assumes a far stronger defender that still cannot reliably detect
our attack. Additionally, current developments indicate that data
assimilation will also be integrated to achieve end-to-end AI-based
weather forecasting in the near future [1, 21]. This would enable
directly computing gradients to the individual observations, allow-
ing attackers to perform the same attack directly on the problem
space.

6.2 Countermeasures
Given the limitations of detecting adversarial observations, we con-
sider alternative defense strategies that extend beyond detection.

Selective verification. A straightforward approach to enhancing
forecasting robustness is to cross-verify predictions using tradi-
tional numerical weather prediction (NWP) systems whenever ex-
treme weather events are forecast. This strategy preserves the ben-
efits of shorter runtimes and improved accuracy offered by the
MLWP system, while potentially mitigating exposure to adversarial
threats. However, this approach alone is not sufficient.

First, such selective verification would fail to detect the second
attack scenario, where an adversary suppresses an impending ex-
treme weather event from the forecast since no secondary check
would be triggered in the absence of an extreme weather prediction.
Moreover, even for the first attack scenario, a conflicting forecast
from NWP would not necessarily indicate an attack or an error on
the part of MLWP, given that MLWP has demonstrated the ability
to predict extreme events earlier and with greater accuracy [34].
Consequently, operating MLWP and NWP systems in parallel does
not constitute an adequate long-term countermeasure.
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Adversarial robustness. In other domains, adversarial training
has proven effective in improving the robustness of machine learn-
ing models [20, 29]. However, given the complexity and immense
computational resources required to train state-of-the-art forecast-
ing models, adversarial training is likely prohibitively expensive or
negatively impacts performance relative to traditional prediction
systems. We leave a deeper exploration of this approach to future
work within the meteorological community. As a more practical
remedy, we recommend that future MLWP development prioritize
not only forecast accuracy but also robustness, by systematically
evaluating models against attacks, such as ours. While this strategy
may not entirely eliminate the risk of adversarial observations, it
could raise the noise threshold required for a successful attack,
reducing its impact or making it more likely to be detected through
statistical testing.

Trusted data sources. The existence of adversarial observations
highlights a fundamental dependency on the integrity of data
sources used in weather forecasting. In safety-critical contexts—
such as military or space operations—this dependency necessitates
the exclusive use of trusted and rigorously validated observational
inputs. Although this constraint may reduce forecast accuracy, it
significantly lowers the risk posed by adversarial data. However,
such measures cannot entirely eliminate the threat, as a determined
adversary may still succeed in compromising individual sources
without detection by any trusted entity.

7 Related Work
A substantial body of research has focused on generating adversarial
examples for machine learning classifiers [6, 10, 24, 29]. In contrast,
comparatively little attention has been devoted to attacks targeting
diffusion models or weather forecasting systems.

7.1 Attacks on Diffusion Models
Diffusionmodels were initially developed and explored in the image
domain, where they also faced the first wave of attacks. Initial efforts
focused on identifying perturbations that make images unlearn-
able, aiming to safeguard intellectual property [38]. Subsequent
work explored how adversarial examples could be used to prevent
imitation or replication of specific artistic styles in generated im-
ages. An example is AdvDM by Liang et al. [28] that we consider in
our evaluation. The diffusion models targeted by these approaches,
however, differ significantly from those used in weather forecasting.
In image generation, the models typically denoise a target sample
directly, whereas in weather forecasting, they generate sequences
of samples autoregressively.

More recently, diffusion models have been extended to domains
such as robotic control, which more closely parallels weather fore-
casting due to its reliance on autoregressive sampling. Attacks in
this domain have emerged as well, crafting inputs that disrupt a
robot’s ability to complete its tasks. Despite domain-specific vari-
ations, the core attack strategies are largely consistent, generally
relying on single-step denoising to approximate the inference pro-
cess. We consider the approach DP-Attacker by Chen et al. [8]
in our evaluation. However, our findings reveal that such attacks
fail to produce adversarial observations with perturbations small
enough to be considered imperceptible or practically effective.

7.2 Attacks on Weather Forecasting
Attacks have also been explored in the context of weather forecast-
ing, specially for renewable energy planning [7, 18, 37, 39]. These
studies differ significantly from ours in terms of their threat model.
Specifically, they assume that the adversary has direct access to
manipulate either the outputs of the forecasting system or the his-
torical data of renewable energy generation. In contrast, we adopt
a more realistic and plausible threat model, where adversarial per-
turbations are introduced through corrupted observations by a
malicious actor. Moreover, prior works are limited in both scope
and objective, each focusing on a single forecasting goal within a
localized region. Our approach, by comparison, evaluates a broader
set of attacker goals spanning global locations.

8 Conclusion
AI-based weather forecasting has attracted increasing attention,
with leading meteorological institutions actively exploring the in-
tegration of such models into operational forecasting systems. Yet,
despite notable advances in model architecture and performance,
existing systems lack- safeguards against adversarial manipulation
of input data. In this paper, we demonstrate that diffusion models—
such as those used in GenCast—are susceptible to precisely crafted
adversarial observations that can alter extreme weather forecasts
without significantly affecting the statistical properties of the input.
More broadly, we introduce a novel attack framework for generat-
ing adversarial examples targeting autoregressive diffusion models,
designed to operate under realistic constraints.

Responsible Disclosure
We have initiated a responsible disclosure process with the GenCast
development team. We hope to explore new countermeasures in
cooperation with the developers.
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