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Abstract
Linear algebra is a cornerstone of neural network
inference. The efficiency of popular frameworks,
such as TensorFlow and PyTorch, critically de-
pends on backend libraries providing highly op-
timized matrix multiplications and convolutions.
A diverse range of these backends exists across
platforms, including Intel MKL, Nvidia CUDA,
and Apple Accelerate. Although these backends
provide equivalent functionality, subtle variations
in their implementations can lead to seemingly
negligible differences during inference. In this
paper, we investigate these minor discrepancies
and demonstrate how they can be selectively
amplified by adversaries. Specifically, we intro-
duce Chimera examples, inputs to models that
elicit conflicting predictions depending on the
employed backend library. These inputs can even
be constructed with integer values, creating a
vulnerability exploitable from real-world input
domains. We analyze the prevalence and extent
of the underlying attack surface and propose
corresponding defenses to mitigate this threat.

1. Introduction
Frameworks like TensorFlow and PyTorch provide a high-
level interface to machine learning, enabling developers to
deploy models across diverse platforms. These frameworks
abstract away the complexities of low-level implementations
and hardware, offering unified access to the computing
resources of each platform, ranging from large clusters
to mobile devices and embedded systems. A cornerstone
of this abstraction lies in linear algebra backends, which
deliver optimized vector and matrix operations tailored to
the peculiarities of each platform, such as dot products, rank
updates, matrix multiplications, and convolutions.
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Figure 1. Chimera examples: Conflicting predictions made by the
same model, depending on the used linear algebra backend such as
Apple Accelerate ( ), Intel MKL ( ), Nvidia CUDA ( ), BLIS ( ).

Technically, this abstraction builds upon the classic BLAS
specification by Lawson et al. (1979), which introduces
a standardized interface for linear algebra, referred to as
Basic Linear Algebra Subprograms. While linear algebra
backends strictly adhere to this specification, their low-level
implementations vary significantly based on the targeted
platform, encompassing the choice of algorithms, paral-
lelization strategies, memory management, and hardware
support (Dongarra et al., 1990). Consequently, a wide array
of these backends has emerged in practice, including Intel
MKL, Nvidia CUDA, Apple Accelerate.

Due to these differences, no linear algebra library backend
behaves exactly like another, and subtle deviations regularly
occur when processing the same input. These discrepancies
arise from the inherent fragility of floating-point arithmetic:
as float representations only approximate real numbers,
operations such as addition and multiplication are not strictly
associative (Goldberg, 1991). For example, when multiply-
ing two 1000×1000 matrices sampled uniformly from [0, 1)
with 32-bit precision, deviations of approximately 6 · 10−10

can be observed between backends (see Section 2). Hence,
the inference of learning models inevitably leads to minor
inaccuracies in their predictions.

Given the minuscule scale of these differences, it is tempt-
ing to assume that backends provide sufficiently similar
computations for most practical applications. In this paper,
we challenge this assumption and pose the question: Is it
possible to craft an input for a model that elicits conflicting
predictions depending on the employed backend library? We
refer to these inputs as Chimera examples, as they exhibit
differing appearances depending on the backend library
used. Figure 1 illustrates examples of these inputs, each
resulting in three different predicted classes depending on
the linear algebra backend employed.
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So far, previous work has focused on floating-point impre-
cision arising from differences in CPU architectures, for
example, for fingerprinting systems (Schlögl et al., 2021;
2024) or breaking the certification of models (Jin et al.,
2022; 2024; Voráček & Hein, 2023). Our analysis of linear
algebra backends builds on this work; yet, we aim to induce
significantly larger changes that flip the prediction of a
model given an adversarial input. While differences in
CPU architecture may further exacerbate this issue, we
demonstrate that Chimera examples also exist between
backends on the same CPU architecture.

Uncovering Chimera examples for a model, however, is
surprisingly challenging: First, the exploited minor dif-
ferences between backends are non-continuous and non-
differentiable, obstructing the use of common attack strate-
gies. Second, the input to models cannot be assumed to
have arbitrary precision. For example in computer vision,
images are typically represented by 8-bit or 16-bit matrices,
making it hard to control tiny differences in calculations. To
address these challenges, we present a generalized method
for constructing Chimera examples. Using this method,
we explore the underlying attack surface and evaluate its
prevalence across six backend libraries, including all major
platforms. Finally, we propose a defense that mitigates the
threat of Chimera examples.

In summary, we make the following major contributions:

• We present the first method for constructing adversarial
inputs that induce conflicting predictions of models due
to differences in linear algebra backends.

• We identify and analyze Chimera examples across six
common backends, including GPU-accelerated and
CPU-based implementations.

• We derive a defense mechanism for Chimera examples
based on our analysis, preserving both the model’s
accuracy and its deterministic nature.

2. Background
Subtle inconsistencies observed in the output of linear
algebra backends stem from the inherent limitation of rep-
resenting real numbers, R, within a fixed bit representation.
To set the scene for our analysis, we first examine how
floating-point numbers approximate R and then explore how
variations in the implementation of linear algebra operations
can magnify these deviations during computation.

2.1. IEEE-754 Floats

The IEEE-754 specification (IEEE, 1985; 2019) serves
as the de-facto standard for floating-point numbers F,
commonly referred to as floats. Widely adopted, the standard

specifies binary formats for 16-bit, 32-bit, 64-bit, and 128-
bit representations. In each format, floats are represented
as triples consisting of a sign s, an exponent e, and a
significand m, where the exponent uses w bits and the
significand uses t bits. A real number x ∈ R can then
be approximated using b = 2(w−1) − 1 and p = t− 1 by:

x ≈ (−1)s · 2(e−b) · (1 + 2(1−p) ·m).

Due to their fixed bit representation, floats can naturally
represent only a finite subset of R. As a consequence,
common properties of arithmetic in R do not hold for
floats. For example, IEEE (1985) specifies that R values
are correctly rounded if they are mapped to the nearest
representable value in F. This rounding scheme introduces
non-associativity in operations, such as (a + b) + c ̸=
a+ (b+ c), since all intermediate results are rounded to the
nearest representable value. While the BLAS specification
defines the inputs and outputs of matrix operations, it does
not specify the order of computational steps, creating a
vulnerable spot via this non-associativity.

To analyze the differences resulting from this imprecision,
we quantify the distance between floats using the concept
of units in the last place (ULP) (Goldberg, 1991). In the
discrete space of F, this metric measures the number of
representable values between two floats, independent of the
exponent and scale of the numbers. For instance, the 32-bit
floats representing the numbers 1 and 1.0000001, as well as
10, 000, 000 and 10, 000, 001, both have a distance of only
1 ULP. Practically, for same-sign floats the measure is easy
to calculate by casting the bit representations of the floats to
integers and returning the absolute delta.

2.2. BLAS Interface

Similarly to IEEE-754, BLAS is the de-facto standard
for linear algebra operations in machine learning. Lawson
et al. (1979) introduced the term BLAS, referring to 38
subprograms for linear algebra operations such as dot
products, matrix multiplications, and convolutions. Since its
introduction, the specified set of operations has undergone
numerous updates and extensions (Blackford et al., 2002)
and is now implemented in various backends, including Intel
MKL, Nvidia CUDA, and Apple Accelerate.

To allow a high degree of freedom in implementation, the
BLAS specification states: “any algorithm that produces
results close enough to the usual algorithms presented
in a standard book on matrix computations is accept-
able” (Blackford et al., 2002). This flexibility is crucial for
accommodating advanced computation techniques, such as
the Strassen (1969) algorithm. However, this same flexibility
in implementation leads to variations in results across
different BLAS backends.
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Figure 2. Abstract visualization of GEMM, C = AB. The sum
of a box column in the middle cube symbolizes the addition into a
single block of C. Because arithmetic in F is non-associative, the
order of adding column boxes matter.

2.3. Sources of Differences

To illustrate the impact of this flexibility, we consider
matrix multiplication as an example. Specifically, we have
three matrices A, B, and C, with a general matrix mul-
tiplication (GEMM) operation defined as C = AB. The
most common approach to implementing GEMM efficiently
involves decomposing A and B into smaller blocks and
distributing the computation, as also recommended in the
BLAS specification (Blackford et al., 2002).

In particular, the matrices A and B are divided into small
blocks X ∈ Fϱ×ϱ, whose size ϱ is determined by the
available cache of the underlying hardware (Goto & van de
Geijn, 2008a). Depending on CPU features, such as SSE
and AVX, these blocks are multiplied using hardware-
accelerated kernels that concurrently process multiple el-
ements within each block. As an example, a 32-bit float
GEMM multiplication in OpenBLAS uses a 16x4 kernel1

and 1024x1024 blocks on an Intel Xeon Gold processor.

Figure 2 illustrates this decomposition process. The matrices
A and B are divided into blocks, whose products are sequen-
tially accumulated in C. While each block multiplication is
accurate within the limits of IEEE 754, the accumulation in
C amplifies deviations due to non-associativity. Depending
on the kernel size, block size and processing order, the
backends implicitly prioritize the summation of values
into C, which can be conceptually visualized by adding
parentheses to group additions.

Note that GEMM is just one example, as many other
operations similarly suffer from rounding errors. Two promi-
nent cases include aggregation (Kahan, 1965), commonly
used in machine learning for gradient summation, and
convolutions, which can be interpreted or transformed
into GEMM calls (Chellapilla et al., 2006). Like GEMM,
efficient implementations of both operations compute results
using blocks and kernels.

1OpenBLAS 16x4 32-bit float kernel.

3. Attacking BLAS Backends
Equipped with an understanding of deviation sources, we
are now ready to tackle the generation of adversarial inputs
exploiting these inconsistencies. In particular, we focus on
inputs that cause a model to produce conflicting predictions.
Before outlining our approach, we first introduce notation
and formalize the concept of Chimera examples.

3.1. Chimera Examples

We consider a learning model θ for classification, deployed
across n different platforms, each utilizing a distinct linear
algebra backend. The inference process of θ on these
backends gives rise to n functions, f1, . . . , fn : Fd → Fc,
where d is the number of input dimensions and c the
number of output classes. Due to variations in backend
implementations, each pair of functions fi, fj may exhibit
slight deviations in its output, creating an attack surface.

In practice, models are rarely applied over the entire range
of floating-point numbers Fd. Instead, the input format
constrains the data to a discrete set of feasible vectors,
which we denote as S ⊂ Fd. For example, when processing
an image, individual pixels are represented as fixed-bit
integers, drastically reducing the input domain. Similarly,
when processing text, inputs are inherently discrete and map
only to a small subset of the space represented by Fd.

As a consequence, we consider the function fi as part of a
high-level classification function

hi : S→ {1, . . . , c}, x 7→ argmax
k

fi(x)k,

which receives an input from S and predicts a class label.
Based on this function, we can formally define Chimera
examples that exist in the input domain S.
Definition 3.1 (Chimera example). Let h1, . . . , hn be a set
of classification functions that utilize the same model θ on
n different linear algebra backends. A Chimera example is
an input x̄ that satisfies

hi(x̄) ̸= hj(x̄), ∀i ̸= j, x̄ ∈ S,

so that the predictions conflict for every pair i, j of the
considered backends.

The discrete nature of S plays a crucial role in the existence
of Chimera examples and has received little attention in
current literature on numerical imprecision. While differ-
ences on the scale of a few ULPs can be easily induced
using high-precision floats, achieving similarly fine-grained
variations from within a limited set S is significantly more
challenging. Consequently, the attack surface depends not
only on the deviations between backends but also on those
that can be realized in practice. This challenge is illustrated
in Figure 3, which shows deviations between the functions
f1 and f2 while overlaying the feasible vectors of S.
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Figure 3. Schematic depiction of Chimera examples. The light blue
area represents Fd ( ), while feasible vectors in S are shown as
dots ( ). Chimera examples are feasible vectors that lie within a
pocket between the decision boundaries of f1 and f2.

3.2. Threat Model

We assume an adversary with white-box access to the
learning model θ and the employed linear algebra backends.
This access enables them to perform inference using the
classification functions hi, . . . , hn, analyze intermediate
computations such as fi(x), and compute gradients over
θ on individual backends. Note, however, the adversary
does not have direct access to genuine numerical results
themselves, as also their computations must be executed on
some linear algebra backend.

This threat model reflects common scenarios where models
are deployed in different configurations in practice, known
to the adversary. These configurations may include develop-
ment and production systems, as well as high-performance
and mobile/embedded implementations. While white-box
access is not typically guaranteed in such settings, we
adopt this strong attacker model to better evaluate the
corresponding defenses introduced later (Section 5).

One may argue that keeping the models and backends confi-
dential might be a possible defense, since black-box attacks
are significantly harder to conduct in this brittle environment.
However, this is not a reliable protection strategy, as it
depends on keeping information confidential that is typically
not considered sensitive. Moreover, in standard machine
learning frameworks, the available backends are usually
known to the adversary by default.

3.3. Finding Chimeras

For constructing inputs following Definition 3.1, we build
on a common strategy for generating adversarial exam-
ples (Carlini & Wagner, 2017): We first select a starting
point x1 and iteratively move it toward the decision function
by computing a perturbations from its gradient,

δ = ∇xk
ℓ (fi(xk), yi) ,

xk+1 = xk + αδ,

where ℓ is a loss function, such as the cross-entropy loss,
α ∈ R+ the step size, and yi the target label for the linear
algebra backend i.

For a single backend i this formulation moves the sample
from its source class to a target class yi. If we dynamically
adapt the step size α, this approach theoretically brings us
infinitesimally close to the decision boundary, potentially
leading to deviations among multiple backends.

However, there is a catch: the generated points do not lie
within S, and thus moving along their gradients may lead
into infeasible regions, as demonstrated in Section 4.5. To
address this problem, we introduce two strategies: First, we
map xk back to S when computing its gradient, ensuring
that the gradients reflect the view from S while optimization
occurs in F. Second, we let the backends “compete” against
each other. This represents an important distinction from
the standard search for adversarial examples. By setting a
different target label yi for each backend i, we achieve a tug-
of-war effect. Because each backend pulls the input towards
its target class, the input sample is ultimately moved closer
to the decision boundary.

Considering these strategies and multiple backends, we
arrive at the following aggregated perturbation:

δ =
1

n

n∑
i=1

∇x̄k
ℓ (fi(x̄k), yi)

with x̄k = q(xk) and ∀i ̸=j yi ̸= yj

where n is the number of backends and q : Fd → S
maps an input from the floating point space Fd back to the
constrained input space S. Depending on the input domain,
this function can be implemented as a quantization, an
assignment to a grid, or a lookup of the closest elements in
S. In the image domain, the quantization function q maps
the input vector to the closest vector representing a valid
8-bit image. One step of this search method, including
quantization, is illustrated in Figure 4.

To ensure that the input xk remains within the general
bounds of the input domain, i.e., for images in [0, 1], we
also introduce a change of variables during optimization,
similar to Carlini & Wagner (2017), reparameterizing each
instance as xk = 1

2 (tanh(wk) + 1). For brevity, we omit
the additional variable w from the mathematical notation.

f2

f1

xk

x̄k

δ

xk+1

Figure 4. Perturbation step of our method. The point xk is moved
along the gradient determined from a feasible input x̄k.
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The resulting method is described in Algorithm 1. We search
for an input x̄k ∈ S that satisfies the Chimera conditions
(Definition 3.1). The loop terminates when a Chimera is
found or the maximum iterations N = 3000 is reached.
Note that we express the calculation of the aggregated
perturbation as a for-loop, as it depends on an architecture
capable of simultaneously obtaining results from multiple
backend instances, such as virtual machines or containers.
The starting point x1 is obtained from 2000 iterations of our
search on a single backend to move towards the proximity
of the decision boundary first.

Algorithm 1 Finding Chimera examples
Input: Starting point x1; fi and yi for each backend i
Result: Chimera example x̄ ∈ S
for k ← 1 to N do

x̄k = q(xk)
if x̄k is a Chimera then

break
δ = 0
for i← 1 to n do

δ ← δ +∇x̄k
ℓ(fi(x̄k), yi)

xk+1 = xk + α
nδ

return x̄k

4. Chimeras in Practice
We begin our empirical evaluation by investigating the
existence of Chimera examples in practice. Our goal is to
assess whether we can construct corresponding feasible
inputs for a learning model and sufficiently amplify their
effect to cause conflicting predictions.

To facilitate future work, we have uploaded our source code
to https://github.com/mlsec-group/dila

4.1. Linear Algebra Backends

For our experiments, we consider the linear algebra back-
ends shown in Table 1, which are widely used in machine
learning frameworks, such as TensorFlow and PyTorch.

OpenBLAS (Xianyi et al., 2012) is an open-source, CPU-
focused library and the successor to the discontinued
GotoBLAS implementation (Gunnels et al., 2001; Goto
& van de Geijn, 2008b). It is a prominent BLAS backend
with numerous CPU-specific optimizations and is widely
used in projects such as NumPy, SciPy, and OpenCV.

BLIS (Van Zee & van de Geijn, 2015) is another open-
source backend for linear algebra, developed in an academic
setting. It provides a superset of BLAS functionalities while
maintaining a high-performance base interface.

Eigen is free software and a widely used C++ library that
implements the BLAS interface, providing efficient linear

Table 1. Overview of considered linear algebra backends

Backend Type Platform Version

OpenBLAS CPU Cross-platform 0.3.28+
Eigen CPU Cross-platform 1.0
BLIS CPU Cross-platform 3.4.0+
Intel MKL CPU Cross-platform 2024.1.0-691
Apple Accelerate CPU Apple Silicon macOS 14.6.1
Nvidia cuBLAS GPU Nvidia GPUs 12.4

algebra operations. Eigen supports a wide range of CPU
features and extensions.

Intel MKL (Intel, 2025) (Math Kernel Library) is a propri-
etary library developed by Intel, offering an extensive set
of highly optimized kernels. Despite its origin, the backend
is not restricted to Intel CPUs and provides cross-platform
functionality with a BLAS interface.

Nvidia cuBLAS is a BLAS implementation included in
the installation of CUDA (NVIDIA, 2020), a library for
GPU calculations. It uses massively parallel instructions to
compute linear algebra. We use CUDA 12.4.

Apple Accelerate (Apple, 2025) contains the default collec-
tion of operations on macOS, featuring a BLAS implementa-
tion. It utilizes either the on-die CPU or the GPU via Metal
Performance Shaders (MPS). We found that the GPU-based
version of MPS does not behave deterministically and so
we disabled this extension of the library.

4.2. Experimental Setup

We consider three datasets, FMNIST (Xiao et al., 2017),
CIFAR-10 (Krizhevsky et al., 2009), and ImageNet (Deng
et al., 2009). For FMNIST, we use a fully connected network
with two layers. For CIFAR, we employ a convolutional
neural network with three VGG blocks (Simonyan & Zisser-
man, 2015) and three dense layers. We train both models to
achieve a test accuracy of 82.32% and 80.75%, respectively.
For ImageNet, we use a pre-trained EfficientNetV2S (Tan
& Le, 2021) with a test accuracy of 84.2%. Refer to
Appendix B for more details. We use 32-bit floats with
23-bit significand in all experiments.

For all of our experiments, we execute the same code on
top of PyTorch v2.5.1 with the different BLAS backends.
All libraries use the default number of threads, as would be
employed in a practical scenario. Moreover, we conduct our
experiments on the following three platforms:

P1 an Intel Xeon Gold 6326 CPU @ 2.90GHz, 16 cores,
and 24 MB L3 cache (Ice Lake),

P2 an Intel Xeon Silver 4114 CPU @ 2.20GHz with an
Nvidia RTX 3090 24GB GPU

P3 a Macbook Air M2, running macOS Sonoma 14.6.1
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Figure 5. Attack success rates for each pair of BLAS libraries on FMNIST, CIFAR and ImageNet.

Except when the Apple Accelerate or Nvidia cuBLAS
backends are considered, all experiments use platform P1.
Otherwise, the respective platforms P2 and P3 are used.
This experimental setup minimizes the impact of CPU dif-
ferences, as all backends run on the same CPU architecture,
except for Apple Accelerate and Nvidia cuBLAS, which are
bound to specific hardware.

Due to blocking and other design choices in efficient matrix
multiplication (see Section 2), the size and order of mini-
batches introduce extra sources of indeterminism, even
within equivalent BLAS implementations. To mitigate this
effect, and to ensure the reproducibility of our experiments,
we default to inference batches of size one.

4.3. Finding Chimeras

To uncover Chimera examples, we systematically search
across all six linear algebra backends. Specifically, we
consider pairs of backends (n = 2) and apply our attack
method (see Algorithm 1) to 1,024 (for FMNIST and
CIFAR) and 128 (for ImageNet) randomly selected test
samples per pair. For each sample, the first backend uses
the input’s true class as its target, while the second backend
is assigned a different, randomly chosen class.

The results of this experiment are displayed in Figure 5. We
observe that Chimera examples can be consistently found
across all backend combinations. The search on FMNIST
yields relatively uniform success rates, ranging from 16% to
24%. In contrast, both CIFAR and ImageNet exhibit more
pronounced variation. We identify two clusters for both
datasets: one consisting of all CPU-based backends, with
success rates between 9% and 18% for CIFAR and 27%
to 44% for ImageNet, and another induced by the cuBLAS
GPU backend. When this backend is used, our method
achieves significantly higher success rates of 95%–96%
for CIFAR and 100% for ImageNet.

We attribute these disparities to the convolutional layers in
the CNN model used, which amplify numerical differences
during GPU computation. Upon deeper inspection of the
PyTorch code, we find that all CPU-based implementation
appear to use the same default implementation for the
convolution layer. For these backends, the differences only
stem from the dense layers of the network and thus the error
aggregation is significantly reduced. On the other hand, the
CUDA-based GPU backend uses a separate convolution
implementation. Due to the large amount of floating point
operations in a convolution (Schlögl et al., 2024), the
gap between the CPU backends and the GPU backend is
significantly higher.

4.4. Ablation Study

An important component of our methodology is the quantiza-
tion function q, which ensures that only vectors representing
valid objects from S are returned as Chimera examples. In
our search method, gradient computations are based exclu-
sively on quantized inputs. To evaluate the effectiveness
of this quantization step, we conduct an ablation study.
Specifically, we compare our approach to an alternative
strategy where we compute gradients on the unquantized
inputs and only apply quantization to check whether a
Chimera example has been found.

We find that the ablated setup perform worse. While our
quantization step results in a slight performance reduction
of about 1% to 2% for GPU-based backends, it yields
substantial improvements for CPU-based backends, pro-
ducing approximately 2.2× more Chimera examples for
CIFAR and between 1.1× to 7× more for FMNIST. As an
additional benefit, the step saves one forward pass through
the model, since only one pass on the quantized input is
needed to obtain both classification results and gradients.
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4.5. Alternative Approaches

We identify Chimera examples across all considered back-
end pairs, yet with varying success rates. This naturally
raises the question: how well does our approach perform
compared to alternative methods? To address this, we
evaluate it against three baseline approaches.

Binary Search. Instead of following gradients, this baseline
starts with two initial samples from different classes and
iteratively interpolates between them until the resulting
sample lies on the decision boundary.

Boundary sample search. Schlögl et al. (2021) propose
a modified iterative FGSM that approaches the decision
boundary. Their algorithm identifies “boundary samples”,
which are inputs used to fingerprint different CPU archi-
tectures and may therefore potentially constitute Chimera
examples in our setting.

Adversarial example search. Carlini & Wagner (2017)
suggest an attack that minimizes the perturbation applied to
the original sample. Consequently, the resulting adversarial
examples should be near the decision boundary and may
serve as potential Chimera candidates.

To compare these baselines with our approach, we repeat the
previous experiment and measure their respective success
rates. Based on the observations from the previous experi-
ment, we group the backends into two categories: CPU only
backends and CPU vs. GPU backends. We report the mean
success rates for both categories in Table 2.

We find that all three baseline approaches exhibit consider-
ably lower success rates than our method across all datasets
and categories. This difference is particularly pronounced
for the FMNIST dataset, where the baseline methods either
fail to find any Chimera examples or achieve success rates
below 0.1%. Similarly, for CPU-only backends, all base-
lines struggle to achieve good results on the CIFAR dataset,
with the highest rate reaching 1.41%. When considering
the cuBLAS backend, baseline performance improves, with
the method of Schlögl et al. (2021) achieving up to 67.38%.
Nonetheless, a significant gap remains between all baselines
and our approach in every setting.

Table 2. Comparison of attack success rates for the baselines.

FMNIST CIFAR

CPU only GPU/CPU

Ours 19.19% 13.61% 95.26%
Binary search < 0.1% < 0.1% 18.14%

Boundary samples 0% 1.41% 67.38%
Adv. examples 0% 0% 1.76%
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Figure 6. Estimated probability of infeasible Chimera examples
around previously found Chimera examples at a given distance.

4.6. Spatial Analysis

So far, we know little about the characteristics of the regions
containing the identified Chimera examples. Are these
points isolated singularities that correspond to numerical
anomalies between decision boundaries, or do they form
“pockets” spanning hundreds of ULPs? While in both cases
the phenomenon corresponds to only a tiny part of F, in the
latter, the vulnerability must be addressed on a broader scale
to protect learning models from attacks.

To gain insight into this question, we broaden our setup:
First, we lift the input constraints on the classification
function h, allowing it to accept any vector from F. Second,
we relax our definition of Chimera examples to include any
input from F that causes conflicting predictions. We refer to
these as infeasible Chimera examples to distinguish them
from those within S. Our goal is to estimate the density of
these conflicting vectors around a feasible Chimera example
in the space of floats.

Due to the high dimensionality of Fd, however, system-
atically traversing all adjacent vectors to some point is
intractable. The curse of dimensionality makes exhaustive
exploration computationally prohibitive. Consequently, we
employ a sampling method to approximate the density of
conflicting vectors at a distance of d from a feasible Chimera
example x̄. Specifically, our sampling for a distance d is
defined as

V (x̄, d) = Eδ∼∆d
[1 [h1(x̄+ δ) ̸= h2(x̄+ δ)]] ,

where ∆d represents the probability distribution of pertur-
bations with an L∞ norm of exactly d ULP, and 1(·) is the
indicator function.

To estimate V , we perform Monte Carlo sampling over the
set of perturbations ∆d and compute the average across all
Chimera examples identified in previous experiments. By
varying d, we can approximate the density of conflicting
vectors surrounding a Chimera example, allowing us to
assess the extent of the surrounding pocket, if one exists.
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The results of this experiment are presented in Figure 6,
where the x-axis denotes the distance d to x̄, and the y-axis
indicates the density of conflicting vectors.

In this experiment, we rarely discover isolated Chimera
examples. Instead, almost all examples are surrounded by ad-
ditional conflicting vectors, forming pockets that range from
1 up to 100,000 ULP. While pocket sizes for CPU-based
backends rarely exceed 100 ULP, the regions of conflicting
vectors for GPU-based backends on CIFAR are considerably
larger. This aligns with our experimental findings, where the
success rate of our approach is significantly higher when
one of the considered backends is Nvidia cuBLAS and the
CIFAR dataset is used.

Although each of the considered pocket regions remains
very small relative to the actual numerical values, the attack
surface of Chimera examples spans a non-trivial region.
Consequently, defenses must address this issue broadly,
as we demonstrate in the following, rather than applying
localized fixes to individual deviations.

5. Defense
Finally, we turn our focus to the challenge of preventing
adversaries from discovering Chimera examples. Construct-
ing defenses in adversarial machine learning is notoriously
hard. Previous work has repeatedly shown that integrating
robustness directly into models can be a tedious and often
fruitless task (Athalye et al., 2018).

Since Chimera examples are closely related to adversarial
examples, adversarial training (Goodfellow et al., 2015;
Madry et al., 2018) appears to be a natural defense strategy.
However, we find that it does not sufficiently reduce
the attack success rate and can be further weakened by
increasing the number of search iterations. Conceptually,
this limitation arises because adversarial training is not
designed to eliminate the tiny pockets of imprecision
near the decision boundary, but instead shift the decision
boundary. A detailed description of our setup and results is
provided in Appendix A. As a remedy, we propose a defense
based on a different principle: we introduce a secret to
protect the model from Chimera examples without requiring
any retraining or changes to the model architecture.

5.1. Keyed Noise Defense

Given a secret s, such as a random bit string known only to
the defender, we introduce a keyed noise function ζd(x, s).
This function generates uniform noise of magnitude d ULP
using a pseudorandom number generator (PRNG) initialized
with the current input x and the secret s. As a result, the
generated noise remains deterministic for each pair (x, s)
but varies if either x or s changes.

Based on this primitive, we define a noisy version of the
classification function as

hi(x) = argmax
k

fi(x+ ζd(x, s))k,

where each input x is perturbed by noise of magnitude
d ULP, determined by x and s. An adversary aware of
the defense but lacking knowledge of s cannot compute
ζd(x, s) if a cryptographically secure PRNG is used. Since
the noise depends on both x and s, repeatedly running the
same input through hi does not yield additional insights. At
the same time, the prediction remains deterministic and does
not interfere with existing machine learning workflows.

The parameter d controls the strength of the added noise,
thereby obstructing the discovery of Chimera examples
in F. Based on the results from the previous section, we
find that these examples reside in confined regions. Thus,
increasing the noise magnitude beyond the size of these
regions significantly hinders their identification, as any
attempt to gradually approach them will overshoot.

5.2. Defense Evaluation

To evaluate the defense, we assume an attacker with white-
box access to the deployed target model, the utilized
backends, and the noise magnitude of the defense; only
the secret s remains unknown. In Section 4.6, we observe
that pockets for the FMNIST and CIFAR dataset extend
at most to 103 ULP and 105 ULP, respectively. Based
on these observations, we calibrate d to these distances.
Since this noise level is relatively small compared to natural
input variations, we observe no negative impact on the test
accuracy of the evaluated models.

To account for the additional noise layer, we extend the
Chimera example search to include these noise perturbations.
However, because the secret key s is unknown, the adversary
can only approximate this layer with their own key, with
the goal to identify Chimera examples that remain resilient
against the perturbations applied by the target model.

Using this adversary, we can evaluate the defense’s effective-
ness by repeating the experiment described in Section 4.3.
The results are summarized in Table 3 and show a significant
decline in success rate compared to the undefended model.

Table 3. Comparison of the attack success rate with and without
the noise defense applied to the model.

FMNIST CIFAR

CPU only GPU/CPU

w/o defense 19.20% 18.04% 95.26%
w/ defense 0.00% 0.69% 0.00%
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In most cases, the success rate drops to zero, with the only
exception being CPU only backends on CIFAR, where we
observe a minimal success rate of 0.69%. This rate could
be further reduced by increasing the noise level d.

In summary, while our defense strategy does not eliminate
the vulnerability, it introduces uncertainty, making it more
difficult for an attacker to construct a successful attack. Even
if an attacker were able to identify a Chimera example
without directly approaching the decision boundary, the
keyed noise function prevent them from exploiting it.

6. Related Work
Our work explores the combination of numerical impre-
cision in floats and adversarial machine learning. Conse-
quently, it is closely related to previous research in these
areas, which we briefly discuss in the following.

Floating-point imprecision. The existence of numerical
deviations in floating-point arithmetic due to swamping
is a long-standing issue (Goldberg, 1991). These errors
have been experimentally studied in modern machine
learning (Al-Rikabi & Renczes, 2022), paving the way for
various attacks against neural networks.

For example, numerical errors in floating-point computa-
tions can compromise soundness assumptions in verifiably
robust models (Jia & Rinard, 2021). They can also be
exploited to embed neural backdoors during model prun-
ing or through quantization artifacts (Tian et al., 2022).
Similarly, subtle differences in model outputs can be
leveraged to fingerprint CPU microarchitectures (Schlögl
et al., 2021; 2024), as well as software stacks and GPU
architectures (Zhang et al., 2024).

Our work extends this line of research by introducing linear
algebra backends as another source of imprecision that when
effectively exploited mislead models.

Adversarial machine learning. Our attack builds on ex-
isting work for generating adversarial examples. Technically,
this research has primarily focused on two attack strategies.
The first aims to minimize the required perturbation (Pa-
pernot et al., 2016; Carlini & Wagner, 2017) and improve
efficacy across different models (Moosavi-Dezfooli et al.,
2017; Gao et al., 2022). The second explores query-efficient
algorithms under black-box threat models (Chen et al., 2020;
2017; Chen & Gu, 2020). Closest to our work is the method
by Schlögl et al. (2021) that employs an iterative method to
identify boundary samples for fingerprinting CPUs, which
serves as a simple baseline in our study.

While our approach follows the blueprint of adversarial
examples, it differentiates in two key aspects. First, we
optimize over multiple slightly different functions whose

internal workings are not differentiable, making successful
attacks more challenging. Second, we construct feasible
inputs adhering to the constraints of the input space S,
similar to problem-space attacks (Pierazzi et al., 2020).

7. Conclusions
Despite being largely invisible to practitioners, linear al-
gebra backends are omnipresent in machine learning and
introduce an unexpected vulnerability. In this work, we
demonstrate that subtle implementation differences can be
exploited to generate adversarial inputs, causing learning
models to produce conflicting predictions depending on
the backend used. These Chimera examples arise across
all six backends examined in our experiments, revealing a
previously unexplored attack surface in practice.

Searching for Chimera examples, however, is challenging
due to the subtle and non-differentiable nature of underlying
floating-point issues. The success rate of our attack varies,
ranging from 8% for some backends to as high as 96%
with Nvidia CUDA. Upon analyzing this phenomenon, we
observe that numerical deviations between backends create
“pockets” of 1–10000 ULPs near the decision boundary.
Building on this insight, our defense prevents the reliable
identification of pockets close to the boundary and thus
impedes the search for Chimera examples.

Impact Statement
We identify a novel attack surface in current machine
learning systems and propose a corresponding defense. As
a result, our work enhances the security of learning-based
systems and mitigates potential risks to users.
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A. Adversarial Training as a Defense
Adversarial training (Goodfellow et al., 2015; Madry et al.,
2018) is a defense that increases the robustness of models by
incorporating knowledge about adversarial examples in the
training process. Because of their close relation to Chimera
examples, we perform an experiment to assess the effective-
ness of adversarial training against our attack. Since training
is performed on a single backend only, incorporating our
attack into adversarial training is conceptually infeasible. As
a remedy, we generate regular adversarial examples using
projected gradient descent (Madry et al., 2018). We conduct
this experiment on the FMNIST and CIFAR datasets.

We observe that the success rate of our attack is reduced
by 30–40% across the backends when adversarial training
is employed. This is a moderate improvement but not as
effective as our defense (see Section 5). We attribute this
drop to our attack’s initialization step, which leverages an
adversarial example to reach the decision boundary and
hence is obstructed by adversarial training. By increasing
the number of iterations in this initial step, however, we can
improve the attack’s performance again. This highlights an
interesting property of our attack: it initially behaves like a
standard adversarial example to reach the decision boundary
but then searches for Chimera examples in its vicinity.

B. Dataset and Model Details
The evaluation of Chimera examples requires balancing
resource-intensive model training with the need for exper-
imentation across different hardware platforms, including
less efficient CPU-based backends. Therefore, we select
FashionMNIST (FMNIST) and CIFAR-10 (CIFAR) as our
initial datasets for evaluation.

FMNIST (Xiao et al., 2017) is an improved alternative
to the original MNIST benchmark and serves as our first
evaluation dataset. It consists of 60,000 grayscale 28× 28
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images of fashion items for training and 10,000 for testing.
For this dataset, we employ a neural network with two
fully connected layers, each containing 128 neurons and
separated by a ReLU activation function. The resulting
model achieves an accuracy of 82.32% and comprises a
total of 101,770 parameters.

CIFAR-10 (Krizhevsky et al., 2009) is a benchmark dataset
consisting of color images of size 32 × 32 pixels, with
50,000 images for training and 10,000 for testing. We adopt
a VGG-based model similar to variant B in (Simonyan &
Zisserman, 2015) for our experiments. Each convolutional
block in our model consists of two 3 × 3 convolutional
layers with padding and stride of one, followed by batch
normalization, ReLU activation, and a 2D max-pooling
layer. The model includes three such blocks, followed by
three fully connected layers with 512 neurons each, ReLU
activations, and dropout (p = 0.5). In total, the architecture
contains 1,076,874 parameters and implements 9 of the
original 13 parameterized layers from the VGG design—
an appropriate scale for the relatively small dataset. After
training for 10 epochs, the model achieves an accuracy of
80.75% on the test set.

As a more realistic benchmark, we additionally consider
ImageNet (Deng et al., 2009), a large-scale dataset con-
taining over 1.2 million images across 1,000 classes. For
this setting, we conduct our experiments using a pre-trained
EfficientNetV2-S model (Tan & Le, 2021), as summarized
in Table A3. This architecture processes inputs through
a series of bottleneck blocks, significantly reducing the
number of trainable parameters. All inputs are resized to a
consistent shape of [b, 3, 224, 224] for inference. For clarity,
Table A3 reports only the output shapes and parameter
counts per block; we refer interested readers to the original
paper (Tan & Le, 2021) for full architectural details. The
model achieves a top-1 accuracy of 84.2% on the test set,
placing it in the range of state-of-the-art models, such as
CoCo, which reaches up to 91% accuracy (Yu et al., 2022).

Table A1. Our VGG-based architecture for CIFAR. Inputs are of
shape (b × 32 × 32 × 3) where b is the batch size and the last
dimension is the number of color channels.

Block Layer Output Shape Parameters

VGG Block 1
Conv2D + BN + ReLU [b, 128, 32, 32] 3,840
Conv2D + BN + ReLU [b, 128, 32, 32] 147,840
MaxPool2D [b, 128, 10, 10] 0

VGG Block 2
Conv2D + BN + ReLU [b, 128, 10, 10] 147,840
Conv2D + BN + ReLU [b, 128, 10, 10] 147,840
MaxPool2D [b, 128, 3, 3] 0

VGG Block 3
Conv2D + BN + ReLU [b, 128, 3, 3] 147,840
Conv2D + BN + ReLU [b, 128, 3, 3] 147,840
MaxPool2D [b, 128, 1, 1] 0

Flatten [b, 128] 0

Classifier
Linear + ReLU + Dropout [b, 512] 66,048
Linear + ReLU + Dropout [b, 512] 262,656
Linear [b, 10] 5,130

Total Parameters: 1,076,874

Table A2. Our DNN architecture for FMNIST. The (b×28×28×1)
inputs are flattened and passed through a series of fully connected
layers with batch size b.

Block Layer Output Shape Parameters

Flatten [b, 784] 0

Linear Block Linear + ReLU [b, 128] 100,480
Linear [b, 10] 1,290

Total Parameters: 101,770

Table A3. EfficientNetV2S architecture for Imagenet.

Block Layer Output Shape Parameters

Stem Conv2D + BN + SiLU 696
(Conv2D + BN + SiLU) x2 [b, 24, 112, 112] 10,464

Block 1

Conv2D + BN + SiLU
+ Conv2D + BN 25,632

(Conv2D + BN + SiLU 124,416
+ Conv2D + BN) x3 [b, 48, 56, 56] 277,920

Block 2

Conv2D + BN + SiLU +
Conv2D + BN 95,744
(Conv2D + BN + SiLU +
Conv2D + BN) x3 [b, 64, 28, 28] 493,440

Conv2D + BN + SiLU 55,296
MB- Conv2D + BN + SiLU 165,888
Blocks AvgPool2D + Conv2d
1-30 + Conv2d + SiLU + Sigmoid

Conv2d + BN [b, 256, 7, 7] 18,597,752

Head Conv2D + BN + SiLU [b, 1280, 7, 7] 330,240
AdaptiveAvgPool2D [b, 1280, 1, 1] 0

Classifier Dropout(0.2) [b, 1280] 0
Linear [b, 1000] 1,281,000

Total Parameters: 21,458,488
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