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Abstract
The increasing complexity of cloud-native applications has necessi-
tated advanced methodologies for threat modeling and security
analysis. This paper presents ThreatCompute, a novel frame-
work that combines LLMs with attack graphs to automate the
generation of threat hypotheses and the quantification of risk in
Kubernetes environments. While traditional approaches to attack
graph generation require significant manual effort from security
experts, ThreatCompute leverages LLMs to extract security in-
sights from system information, reducing reliance on manual inter-
vention while maintaining high accuracy and generating context-
specific, system-aware threat insights. The framework utilizes the
MITRE ATT&CK Matrix and the Microsoft Threat Matrix for Ku-
bernetes as structured domains of possible attack techniques. Based
on LLM-generated threat hypotheses and a quantitative risk metric,
ThreatCompute constructs detailed attack graphs that illustrate
potential attack paths and assess their associated risks. This enables
both qualitative and quantitative evaluations of application security
across varying levels of granularity. Through real-world examples
of Kubernetes applications, we demonstrate the effectiveness of our
approach in identifying and quantifying security risks.
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1 Introduction
Modern applications are increasingly deployed in complex, dis-
tributed cloud environments. As cyber attacks grow in frequency
and sophistication, there is a critical need for automated methods to
assess and quantify security risks at scale. Security risk assessment
plays a key role in protecting sensitive data, maintaining service
availability, and preserving stakeholder trust. While existing frame-
works provide structured approaches to modeling and mitigating
risk, they often struggle with unseen or evolving attack strategies,
especially in dynamic settings like Kubernetes.

Threat modeling generally involves two steps: First we identify
potential threats in the system. Second, we estimate the likelihood
of those threats being exploited. However, generating meaningful
threat hypotheses typically requires deep system insight and ex-
tensive domain expertise. Johnson et al. [12] identify three core
challenges in this process: (1) identifying and formalizing relevant
system information, (2) structuring and analyzing security-relevant
data, and (3) detecting and reasoning about potential weaknesses.
Attack graphs, which are a widely used representation of attack
paths, depend on this modeling process. Formal threat modeling
languages such as the Meta Attack Language (MAL) provide a struc-
tured, automatable way to represent threats but still rely on manual
input from security professionals.

Large language models (LLMs) have recently shown promise in
cybersecurity, including for parsing system documentation and gen-
erating security insights [7, 36]. LLMs can synthesize unstructured
and structured information, making them a strong candidate for
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automating threat modeling in Kubernetes environments, where
rich system metadata is available through APIs and scanning tools.

We present ThreatCompute, a novel framework that combines
the formal modeling capabilities of MAL with the analytical power
of LLMs. Our approach automates threat model generation and at-
tack graph construction by extracting and analyzing Kubernetes sys-
tem data using modular LLM prompting. Afterwards we let the LLM
generate threat hypotheses using a curated set of attack techniques
drawn from the Microsoft Threat Matrix for Kubernetes. These hy-
potheses are integrated with vulnerability scan results to generate
structured attack graphs, guided by a refined time-to-compromise
(TTC) metric. For evaluation, we tested ThreatCompute on two in-
tentionally vulnerable Kubernetes applications. Against the ground
truth in one application, ThreatCompute correctly identified 29
out of 30 known attack techniques and demonstrated high semantic
accuracy in its generated threat descriptions. The implementation
of the framework is designed for practical use, and we published
the code on GitHub 1.

Contribution. We make the following contributions:
• Threat Modeling (Section 4):We introduce a framework
that automatically generates system-aware threat models for
Kubernetes using LLMs. The generated models are accurate
and repeatable, as they are grounded in a structured system
representation that deterministically captures the state and
topology of the Kubernetes environment.
• Time-To-Compromise (Section 5):We adapt and extend a
TTC model that incorporates vulnerability data and attacker
skill to enable quantitative risk scoring.
• Attack Graph Generation (Section 6): We combine the
system information, with the threat model and the computed
TTC to simulate attacker behavior and generate probabilistic,
data-driven attack graphs that reflect real exploit paths.

Together, these components address the core challenges of auto-
mated, scalable threat modeling in complex cloud-native systems.

2 Background
To support our approach to automated attack graph generation,
this section introduces the foundational concepts and technologies
on which our framework is built. We begin with an overview of
Kubernetes security, threat modeling, and attack graphs, followed
by a introduction to the MITRE ATT&CK framework.

Kubernetes Security. Cloud-native applications differ from tra-
ditional systems by using microservices that allow independent
development, deployment, and scaling [21]. Containers are the
main deployment units, ensuring consistency across environments.
Kubernetes automates the deployment, scaling, and management
of containers [4]. It features automated scheduling, self-healing,
and service discovery, and is structured around master and worker
nodes. Applications run in Pods, the smallest deployable units,
which may contain one or more containers. Key components like
the API server, scheduler, and controller manager maintain the clus-
ter’s state [28]. Despite these capabilities, Kubernetes introduces
notable security challenges [28]. According to the Cloud Native

1https://github.com/ThreatCompute/ThreatCompute

Computing Foundation, 40% of users express security concerns. Ex-
posed API servers, vulnerable containers, and misconfigurations in-
crease risk. Best practices include role-based access control (RBAC),
timely patching, and enforcing strict pod and network policies.

Threat Modeling and Attack Graphs. As computer systems grow
in size and complexity, identifying and assessing security threats be-
comes increasingly difficult. Threat modeling methodologies such
as STRIDE and PASTA offer structured approaches that help secu-
rity professionals to systematically evaluate potential risks [15, 20].
To formalize and streamline this process, threat modeling languages
can be used to describe system components, attack steps, and defen-
sive mechanisms in a reusable, rule-based format. Unlike isolated
threat models, these languages support the reuse of predefined
logic and constraints, improving efficiency and consistency across
analyses [12].While threat modeling focuses on identifying vulnera-
bilities and possible threats within a system, attack graphs visualize
how these threats might be exploited. Specifically, this work adopts
the concept of host-based attack graphs, where nodes represent
system components and edges denote feasible attack steps between
them [39]. To facilitate the formal generation of such graphs, John-
son et al.[12] introduced MAL, a modeling framework that encodes
threat logic into a domain-specific language (section 3.1). This en-
ables the automated construction of attack graphs grounded in
formal semantics and domain knowledge.

MITRE ATT&CK Framework. The MITRE ATT&CK framework
is a widely adopted taxonomy and knowledge base of adversarial
behavior across the attack life-cycle [31]. It classifies these attack
steps by tactic (the adversary’s goal), technique (the method used),
and procedure (a specific implementation), commonly referred to as
TTPs. Microsoft’s Threat Matrix for Kubernetes adapts this frame-
work to focus specifically on Kubernetes environments [19], offer-
ing a targeted reference for mapping security risks in containerized
cloud-native systems.

3 Related Work
This section reviews relevant work in two key areas: (1) attack
graphs and risk assessment, a foundational area for modeling ad-
versarial behavior and quantifying system-level security risks; and
(2) the application of LLMs in cybersecurity, including their use
in threat modeling, security operations, and emerging automation
efforts. Together, these threads highlight the potential and limita-
tions of current methods, and motivate our goal of fully automating
threat model generation and attack graph construction using LLMs.

3.1 Attack Graphs and Risk Assessment
Attack graphs have long been used to model adversarial behav-
ior, support security assessments, and quantify system risk [9, 32].
Foundational contributions include early formalizations by Sheyner
et al. [29] and Wang et al. [34], which introduced techniques for
automated attack path enumeration and visualization. A notable
advancement in this space is the Meta Attack Language (MAL) by
Johnson et al. [12], which formalizes threat modeling as reusable,
composable domain-specific languages (DSLs). MAL enables semi-
automated generation of attack graphs by encoding attack logic
and relationships in a structured, probabilistic format. Wideł et
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al.[35] later provided a formal specification of MAL, further estab-
lishing its value as a foundation for automation in attack graph
generation. MAL’s impact is evident in its adoption across domains
such as industrial control systems [24], corporate IT environments
[13], vehicular systems [14], cloud platforms like AWS [8], and
the power grid [11]. However, while MAL reduces manual effort,
DSL creation still requires significant domain expertise and sys-
tem knowledge. Other efforts have aligned attack graph generation
with real-world adversary behavior by integrating frameworks like
MITRE ATT&CK [2, 22], or by modeling risk through probabilistic
estimation [37]. Recent approaches explore automation using sys-
tem telemetry or vulnerability data, yet many remain dependent
on static rules or human input [16]. Building on MAL’s two-stage
process—first defining threat models, then generating graphs—our
work seeks to automate both steps using LLMs. By extracting struc-
tured threat models directly from system data, we eliminate the
need for manual DSL authoring and enable end-to-end attack graph
generation for Kubernetes environments.

3.2 LLMs for Cybersecurity
LLMs are increasingly applied across cybersecurity domains, includ-
ing threat modeling, incident response, and vulnerability analysis.
Elsharef et al. [7] explore LLM-driven threat modeling by embed-
ding design documents into a vector database to support analyst
queries, offering flexible retrieval. Wu and Yang et al. [36] fine-tune
LLMs to identify threats in banking system descriptions using the
STRIDE framework. Similarly, Saha et al. [25] introduce ThreatLens,
a multi-agent LLM framework for hardware security verification,
which assists with threat identification and test plan generation
but incorporates human feedback. While these efforts demonstrate
the potential of LLMs in security analysis, they do not generate
structured threat models as attack graphs or provide mechanisms
to quantify risk. Other works explore broader applications of LLMs
in cybersecurity, such as the Microsoft Security Copilot [10], which
integrates LLMs into SOC workflows for triage and remediation us-
ing real incident data. CTI-focused research has also applied LLMs
to entity extraction and TTPmapping [1, 3, 17], while tools like Pen-
testGPT [6] simulate attacker behavior for offensive testing. One
recent work touches on LLM-driven attack graph generation [23],
though they typically focus on linking existing vulnerabilities rather
than generating threat models from system data.

In contrast, ThreatCompute offers an end-to-end framework
that fully automates both structured threat modeling and attack
graph generation for Kubernetes systems. It builds formal system
graphs, applies modular prompting, and grounds its reasoning in
real vulnerability and misconfiguration data, effectively bridging
the gap between raw system telemetry and actionable security
models.

4 Threat Model Generation Framework
Writing threat modeling rules requires detailed knowledge of a
system’s architecture, components, and vulnerabilities. Johnson
et al. [12] showed that once these rules are formalized, structured
attack graphs can be generated automatically. However, authoring
such rules remains a manual, expert-driven task.

Attack Tactic
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Application
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Attack
Techniqus
Analysis

extend
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Tactics Techniques

Threat Modeling Rules

Assets
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System
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Figure 1: Framework overview.

ThreatCompute eliminates this bottleneck by using LLMs to au-
tomatically generate system-specific threat models for Kubernetes-
based applications. Unlike generic prompting, our approach uses a
structured graph representation of the target Kubernetes environ-
ment to guide the LLM. This graph captures the system’s topology
and configuration, with nodes representing entities like pods or ser-
vices and edges encoding containment relationships. By aligning
this system model with the Microsoft Threat Matrix for Kuber-
netes [19], we constrain and focus the LLM’s reasoning on realistic,
context-aware threats. In essence, ThreatCompute functions as
an early AI agent [26] where the LLM dynamically directs its own
reasoning over structured inputs, laying the groundwork for fu-
ture integration with security scanners and orchestration tools via
Kubernetes-native MCP servers.

Figure 1 provides an overview of the framework. Our approach
applies a divide and conquer strategy, breaking down threat model-
ing into four key steps:
• Component Analysis: Analyzing and summarizing system
architecture.
• Asset Identification: Categorizing system assets for threat
modeling.
• Attack Tactic Analysis: Determine plausible attacker goals
per asset (tactics).
• Attack Technique Analysis: Identify techniques attackers
could use to achieve the attack tactics.

This modular pipeline enables precise LLM prompts at each step.
Rather than presenting the entire system state, we filter scan data
(e.g., SBOMs, vulnerabilities, and misconfigurations) based on the
graph structure to include only the most relevant context. Each
step builds on the last, allowing the LLM to generate focused, high-
quality threat modeling rules.

The framework focuses on detecting Kubernetes-specific threats,
leveraging Microsoft’s Threat Matrix for Kubernetes [19]. It does
not analyze source code or interact with application frontends,
making techniques like SQL injection out of scope.

4.1 System Model as Input
The first and most essential step in threat modeling is gathering
all security-relevant data. To enable a fully automated process, we
systematically collect and structure this data for further analysis.
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We extract relevant system information from the Kubernetes API
and security scanners, namely Trivy2 and Kubescape3, and use it to
construct a structured system model (𝑆𝑀). This model, represented
as a directed graph 𝑆𝑀 = (𝑁𝑆𝑀 , 𝐸𝑆𝑀 ), captures the architecture of
the Kubernetes environment and serves as the foundation for threat
modeling. To retrieve this data, we query the Kubernetes API using
the Python Kubernetes client, extracting system resources such as
namespaces, pods, containers, and their containment relationships.
We then enrich this topology with scanner output capturing vul-
nerabilities (CVEs), misconfigurations, exposed secrets, exposed
ports, and privilege-related issues such as overly permissive RBAC
roles or default service accounts with elevated access. Shell avail-
ability and root access are determined by inspecting each container
individually. The system model graph consists of the following
elements:
• Nodes (𝑁𝑆𝑀 ) represent system components such as clus-
ters, namespaces, nodes, pods, containers, and shells. Each
node is annotated with security-relevant metadata, including
kernel versions, SBOM contents, known vulnerabilities, mis-
configurations and compliance violations, access controls
(e.g., RBAC role bindings), and network exposure details (e.g.,
open ports or public-facing services).
• Edges (𝐸𝑆𝑀 ) define containment relationships (e.g., a con-
tainer belonging to a specific pod).

This system model aggregates critical security data, providing a
structured and comprehensive representation of the environment
while enabling architecture-based filtering. Listing 1 illustrates
an example system model node representing a container in the
Kubernetes cluster. For downstream processing, we serialize the
graph in Graph Modeling Language (GML) format and use it as
structured input for the LLM. The completeness and accuracy of
this model are crucial: missing system components, privileges, or
vulnerabilities in the system model would exclude them from the
generated threat model and attack graph, directly impacting the
quality of the security assessment.

4.2 Threat Modeling Steps
We now describe how ThreatCompute uses a general-purpose
LLM to transform a graph-based system model of a Kubernetes ap-
plication into a structured, system-aware threat model. The process
consists of four modular stages: component analysis, asset identifi-
cation, attack tactic analysis, and attack technique analysis. Each
step builds on the previous one, enabling a progressive refinement
of threat knowledge. To perform these steps, ThreatCompute
employs a general-purpose LLM capable of understanding and gen-
erating structured security-related content. We used Mistral-NeMo,
but other open-source models, such as LLaMA 3 or Mixtral, can
also be used, provided they do not restrict security-relevant out-
puts. The model is prompted to generate structured outputs, like
asset summaries, tactic lists, and technique descriptions, format-
ted in JSON and aligned with established taxonomies, namely the
MITRE ATT&CK Matrix for Kubernetes. Our prompting approach
emphasizes deterministic reasoning and system-specific context,

2https://trivy.dev/
3https://kubescape.io/

Listing 1: Example system model node for a container.

NAME "hunger -check"
CONTAINER "hunger -check"
IMAGE "madhuakula/k8s -goat -hunger -check"
TYPE "Container"
NAMESPACE "big -monolith"
POD_INFOS [

can_use_k8s_api 1
roles "secret -reader"

]
SBOM "['ubuntu ', 'adduser ', ..., 'zlib1g ']"
CHECKS [

name "Non -root containers"
severity "Medium"
scoreFactor 6

]
CHECKS ...
CVEs [

id "CVE -2024 -8096"
title "curl: OCSP stapling bypass with GnuTLS"
resource "curl"
severity "MEDIUM"
cvss [

version 3.1
vector "CVSS :3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N"
metrics [

baseScore 6.5
exploitabilityScore 3.9
impactScore 2.5

]
]

]
CVEs ...

and outputs are explicitly grounded in the system graph and vul-
nerability scan data.

Component Analysis. In the initial preparatory step, the system
information is parsed, and the LLM is used to analyze and summa-
rize the information of the system components. For containers, this
includes aggregating the SBOM and inferring the potential purpose
of the container. If an instance contains other components (e.g., a
pod with multiple containers), the analysis of those encapsulated
components is included in the prompt (instance analysis prompt:
“You are provided with the attributes of an ’asset_type’:
’node_attributes’. The ’asset_type’ contains instances
’successor_asset_type’ which were analyzed as follows:
’analyses’. Describe the ’asset_type’ and its possible
use in 3 sentences.”). Additionally, the LLM is prompted to
consolidate the analyses of all instances within a category (e.g., all
pods). These summaries and analyses are an essential foundation
for the subsequent steps.

Asset Identification. After the component analysis phase, the
next step identifies relevant asset categories for threat modeling.
To support high-level threat reasoning in Kubernetes-based ap-
plications, assets are abstracted as general categories rather than
individual instances (e.g., specific pods or containers). These cate-
gories are derived from the system model (𝑆𝑀) and include foun-
dational types such as Cluster, Namespace, Node, and Pod. Given
the heterogeneity of container configurations—reflected in their
SBOMs and roles—containers are further classified using the results
of LLM-based component analysis. The LLM assigns each container

https://trivy.dev/
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to a functional category such as Application Container, Network-
ing, Storage Container, or Health Probe, accompanied by a concise,
LLM-generated description for downstream threat modeling. To
ensure completeness, all containers are checked for classification.
Unassigned instances are placed in a fallback General category. This
structured asset identification process supports the development of
a threat model that operates at a meaningful level of abstraction,
while preserving the critical security-relevant characteristics of
system components.

Attack Tactic Analysis. Having identified the relevant attack as-
sets, the subsequent step involves prompting the LLM to propose
potential attack tactics applicable to each asset. The tactics of the
MITRE ATT&CK Matrix serve as a well defined set of high-level
attack objectives. For each identified asset, the LLM is instructed to
“Analyse the security, possible misuse or exploitation
of the asset ’asset’.” and to “List tactics from the
MITRE ATT&CK Matrix that can be performed on ’asset’
instances.”. The foundation of the attack tactic analysis is the
set of asset descriptions generated in the previous step, ensuring a
context-aware evaluation. To further enhance accuracy and consis-
tency, the prompt explicitly includes the complete list of tactics from
the MITRE ATT&CK Enterprise Matrix. This approach constrains
the LLM’s output to a predefined taxonomy, reducing ambiguity
and aligning the results with a widely accepted cybersecurity frame-
work.

Attack Technique Analysis. The final stage of the threat modeling
process focuses on identifying specific attack techniques that could
be used to achieve the previously determined attack tactics for
each asset. At this point, we explicitly integrate information about
misconfigurations and vulnerabilities associated with each asset,
which were not directly considered in the tactic analysis phase.
To determine the applicable techniques, we must first process the
potentially extensive list of vulnerabilities and misconfigurations
identified by security scanners within the systemmodel. To manage
this volume of data, we first group vulnerabilities by the software
they affect, generating concise summaries for each group. These
per-software summaries are then aggregated into a comprehensive,
asset-wide summary. This structured summarization provides the
LLM with a clearer and more relevant view of the weaknesses
present in each asset. Subsequently, the LLM is prompted with
the instruction: “Analyze the given asset ’asset’ and list
techniques that could be used to achieve the tactic
’tactic’ on the ’asset’.”. To ensure the generation of relevant
and specific techniques, this prompt is enriched with essential
contextual information, including:

• The asset description generated during the component anal-
ysis phase.
• Summaries of vulnerabilities and misconfigurations associ-
ated with the asset, allowing the LLM to identify techniques
that exploit these specific weaknesses.
• A list of techniques corresponding to the specified tactic in
the Threat Matrix for Kubernetes.
• A complete list of system assets, helping the LLM understand
potential targets and the relationships between different
components.

Pod
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Container

System
Container

Kubernetes
Core

Kubernetes
Job

Networking

Storage

Build
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Development

DNS

General
Containers

clusternamespace

Shell

RootShell

Figure 2: Threat model graph for Kubernetes Goat.

For every tactic identified per asset, the LLM generates a structured
list of potential techniques. A key aspect of each proposed attack
technique is the designation of a target asset, which may be either
the asset from which the technique is initiated or a different asset
within the system. Table 1 shows two example techniques. Each
technique in this list is detailed by:
• Its name, aligning with the Threat Matrix for Kubernetes.
• A description of how the technique could be executed in the
context of the specific asset and its vulnerabilities.
• The attack target, clearly identifying which asset the tech-
nique aims to compromise.
• Any prerequisite tactics that must be achieved before the
successful execution of the technique, establishing a logical
sequence of attack steps.

The resulting output is a structured set of threat modeling ar-
tifacts, from tactics to concrete techniques linked to asset vulner-
abilities. Unlike prior work, which either produces unstructured
outputs or relies on generic mappings, ourmethod tightly integrates
LLM reasoning with concrete system data and formal taxonomies—
automating both the breadth and depth of threat modeling in Ku-
bernetes environments.

4.3 Threat Model Composition
The output of the previous threat modeling steps is a list of tech-
niques, each associated with a specific tactic and defined by a source
asset (from which the technique is initiated) and a target asset
(which the technique aims to compromise). Based on this list, a sin-
gle unified threat model graph is constructed. This graph fulfills two
main purposes: it provides a structured and visual representation
of potential threats within the system, and it enables the simulation
of attack paths for subsequent generation of attack graphs.

The threat model is formalized as a bi-directed graph, denoted
as 𝑇𝑀 = (𝑁𝑇𝑀 , 𝐸𝑇𝑀 ), where:
• Nodes (𝑁𝑇𝑀 ) represent assets with associated security at-
tributes.
• Edges (𝐸𝑇𝑀 ) define relationships between assets and attack
techniques.
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Table 1: Example techniques generated for the example application Kubernetes Goat.

Source Target Tactic Technique Required
Tactic

Technique Description

Pod Pod Persistence Writable
hostPath
mount

Privilege
Escalation

Mount a writable hostPath volume to the Pod, allowing the attacker
to write files to the host system and achieve persistence.

Application
Container

Networking Discovery Network
mapping

Initial
Access

An attacker can use tools like ‘nmap‘ or ‘netcat‘ to map the net-
work and identify active services, open ports, and potential targets
within the cluster. This can be achieved by exploiting a container
with system-level operations (7 containers) or by compromising a
container with access to the Kubernetes API (18 containers).

A node is instantiated for each identified asset as described in
section 4.2. Subsequently, each set of techniques from one source to
one target asset are encoded as a directed edge between those two
assets, reflecting the attack flow. Figure 2 illustrates an example
threat model graph generated for an example Kubernetes applica-
tion. This high-level representation facilitates the identification of
feasible attack paths through graph traversal.

Conclusion. This approach automates threat modeling for Kuber-
netes environments, reducing the manual effort required to define
security risks. By leveraging LLMs for structured threat rule gener-
ation, the framework enhances cybersecurity analysis and provides
a scalable solution for security assessments.

The effectiveness of ThreatCompute’s threat modeling stems
from two core design decisions: domain restriction and task spe-
cialization. First, by constraining the LLM to operate within the
predefined taxonomy of the Microsoft Threat Matrix for Kuber-
netes, we significantly reduce the space of possible outputs. This
domain restriction ensures that the generated threats remain both
relevant and realistic to Kubernetes environments, and reduces the
risk of hallucination or irrelevant outputs—a known concern when
using LLMs in open-ended tasks.

Second, we adopt a highly modular pipeline that breaks down
the threat modeling process into tightly scoped subtasks. Each step
in the pipeline, from component analysis to tactic and technique
generation, isolates a specific reasoning challenge and provides
targeted context based on the system model graph. This aligns with
strengths demonstrated by LLMs in prior work: they are particularly
well-suited to tasks involving summarization, pattern recognition,
and context-aware mapping. In our framework, the LLM’s role is
not to generate free-form attack ideas, but to analyze structured
system information and map it step-by-step into a curated threat
space. This minimizes ambiguity and optimizes the quality and
consistency of the generated threat model.

As a result, we believe that the generated threat models, and the
subsequent attack graphs derived from them, are not only meaning-
ful, but grounded in realistic adversarial behavior. The structure of
the process lends itself to inductive trust: if each step remains within
a constrained domain and performs reliably, then the composition
of these steps can be expected to produce valuable, system-aware
threat insights.

5 Time-To-Compromise as Quantitative Metric
To complement qualitative threat modeling with quantitative secu-
rity risk assessment, we employ the Time-To-Compromise (TTC)
metric, which estimates the expected time until an attacker com-
promises a system or a system component. Originally introduced
by McQueen et al. [18], TTC aids organizations in prioritizing re-
sources to secure high-risk assets. It enables data-driven system
evaluation based on system-specific CTI and provides fast and in-
tuitive information about the system’s security state.

5.1 Foundational Model
McQueen’s model computes TTC based on the number of system
vulnerabilities and an attacker’s skill level. It models the TTC as
three main processes:

Process 1 A vulnerability is present in the system, and the
attacker already has a suitable exploit, leading to a rapid
potential compromise.

Process 2 A vulnerability exists, but the attacker lacks an ex-
ploit, requiring additional time for the attacker to develop
or acquire the necessary exploit.

Process 3 No known vulnerabilities are currently exploitable,
meaning that an attacker must wait for the discovery of a
new (zero-day) vulnerability.

The model assigns discrete skill levels to attackers and assumes uni-
form exploit distributions. While this approach provides a general
framework, it does not incorporate vulnerability-specific character-
istics or environmental factors.

5.2 Refinements and Adaptations
Several works have extended the original TTC model to better
represent reality. Zieger et al. [40] and Ling et al. [24] both incor-
porated vulnerability-specific characteristics, such as CVSS scores,
into the TTC estimation. They also both update constant values in
the model according to recent real-word datasets. The approach by
Zieger et al. [40] relies on the complete set of possibly applicable
vulnerabilitiesW, making it impractical for large-scale systems
like Kubernetes. Ling et al. [24] further refined the model for Indus-
trial Control Systems by introducing exploitability-based scaling
for TTC computations and setting fixed time estimates for different
attacker skill levels. Ling’s work is a very good example of how the
original approach by McQueen et al. can be refined for one specific
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attack environment, and we base our TTC computation on Ling’s
approach.

5.3 Time-to-Compromise for Kubernetes
The original TTC computation by McQueen et al. does not make
use of the full system information available and uses constants
based on CTI reports from 2006, which no longer reflect the current
security landscape. To adapt the TTC concept for Kubernetes, we
build upon McQueen et al.’s methodology while integrating im-
provements inspired by Zieger et al. [40] and Ling et al. [24]. These
enhancements include incorporating CVSS scores into the three
computational processes and updating constants based on current
CTI, ensuring a more accurate and context-aware risk assessment.

Definition 5.1 (Kubernetes Time-To-Compromise). Let 𝑆 =

{𝑛𝑜𝑣𝑖𝑐𝑒,
𝑏𝑒𝑔𝑖𝑛𝑛𝑒𝑟, 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒, 𝑒𝑥𝑝𝑒𝑟𝑡} represent a set of discrete skill lev-
els. Let 𝑉 denote the set of vulnerabilities in the component where
each vulnerability 𝑖 has a CVSS base score𝑏𝑖 and exploitability score
𝑥𝑖 . For attacker skill level 𝑠 ∈ 𝑆 the redefined time-to-compromise

𝜏 : 𝑉 × 𝑆 → R ,

is defined as

𝜏 (𝑉 , 𝑠) = 𝑡1𝑃1 + 𝑡2 (1 − 𝑃1) (1 − 𝑢) + 𝑡3𝑢 (1 − 𝑃1) .

5.3.1 Process 1. Like Ling et al. [24] we integrate CVSS scores into
the computation of 𝑡1. We align exploitability scores from CVSS
v2 and v3.1 to a common scale by increasing the multiplication
factor for v3.1 to 20. The worst-case exploitability score is used to
determine:

𝑡1 = 𝑐1
10

𝑥𝑚𝑎𝑥
, 𝑥𝑚𝑎𝑥 = max(𝑥𝑖 ∈ 𝑉 ), 𝑐1 = 1 day.

For process 1, 𝑡1 incorporates CVSS exploitability scores, and we
extend this by integrating vulnerability-specific values into 𝑃1. As
the CVSS exploit code maturity metric is often missing from public
databases (e.g., NVD by NIST4), we approximate exploit availability
based on the CVSS base score. Higher base scores typically indicate
vulnerabilities that are easier to exploit and have greater impact on
confidentiality, integrity, or availability.

Accordingly, we define 𝑃1 as:

𝑃1 = 1 − 𝑒−
∑|𝑉 |

𝑖=1
𝑏𝑖

𝑏𝑚𝑎𝑥

𝑚 (𝑠 )
𝑘 , 𝑏𝑚𝑎𝑥 = 10 ,

where 𝑏𝑖 is the base score of vulnerability 𝑖 , 𝑏𝑚𝑎𝑥 is the maximum
possible base score, and𝑚(𝑠) is the number of exploits available to
an attacker with skill level 𝑠 . The product 𝑏𝑖

𝑏𝑚𝑎𝑥
· 𝑚 (𝑠 )

𝑘
represents

the conditional probability of successfully exploiting vulnerability
𝑖: first finding a suitable exploit (𝑚 (𝑠 )

𝑘
), then having the capability

to use it ( 𝑏𝑖
𝑏𝑚𝑎𝑥

). Following McQueen et al. [18], we assume exploits

are uniformly distributed across all 𝑘 vulnerabilities, making 𝑚 (𝑠 )
𝑘

independent of a specific 𝑖 .
We set 𝑘 = 270139, reflecting the number of vulnerabilities

currently listed in the NIST National Vulnerability Database5. Ta-
ble 2 presents the𝑚(𝑠) values derived from the Metasploit exploit

4https://nvd.nist.gov/vuln-metrics/cvss [Accessed 18 Nov 2024]
5https://nvd.nist.gov/general/nvd-dashboard [Accessed 18 Nov 2024]

Table 2: Number𝑚(𝑠) of readily available exploits to an at-
tacker of skill level 𝑠.

Skill level 𝑠 Number of exploits𝑚(𝑠) 𝑚(𝑠)/𝑘

novice 2418 0.009
beginner 3220 0.012
intermediate 4956 0.018
expert 5800 0.021

database, which classifies exploits across seven ranks6. Exploit
counts per level were obtained by filtering the Metasploit dataset
accordingly. Inspired by these rankings, we assign skill levels as
follows: novice: excellent, beginner: excellent–good, intermediate:
excellent–normal, and expert: excellent–manual. Vulnerabilities
with a CVSS base score of 0 are excluded, as they represent no
impact across all metrics and thus no exploitability.

5.3.2 Process 2. Since exploitability influences both 𝑡1 and 𝑡2, we
redefine 𝑡2 similarly:

𝑡2 = 𝑐2,𝑠 ·
10

𝑥𝑚𝑎𝑥
,

Where 𝑐2,𝑠 is the mean time to develop an exploit for an attack of
skill level 𝑠 . [24] set these 𝑐2,𝑠 values as 37 days for a novice, 27 days
for a beginner, 16 days for an intermediate, and 6 days for an expert
attacker based on a threat intelligence report from 2017. According
to the threat intelligence report on time to exploit trends by google
[5] 12% of n-day vulnerabilities were exploited within 1 day and
over half were exploited within 1 month (i.e. on average 30.4 days).
As [24] we divide this range among the four attacker levels. Based
on these values we update 𝑐2,𝑠 to: 30.4 days for a novice, 20.6 days
for a beginner, 10.8 days for an intermediate, and 1 day for an expert
attacker.

The probability 𝑢 is refined by incorporating the fraction of
exploitable vulnerabilities for each skill level:

𝑢 (𝑉 , 𝑠) = min

(
𝑢𝑚𝑎𝑥 ,max

(
𝑢𝑚𝑖𝑛,

(
1 − |{𝑥𝑖 > 𝑥 (𝑠), 𝑥𝑖 ∈ 𝑉 }|

|𝑉 |

) |𝑉 | ))
,

where 𝑥 (𝑠) represents the maximum exploitability score an attacker
of skill 𝑠 can master [24], and 𝑢𝑚𝑖𝑛 = 0.05, 𝑢𝑚𝑎𝑥 = 0.95 ensure
stability.

5.3.3 Process 3. The calculation of process 3 remains unchanged
because the term 𝑡3𝑢 (1 − 𝑃1) already contains all the previously
mentioned integrations of CVSS scores via 𝑢 and 𝑃1.

𝑡3 =

(
1
𝑓
− 0.5

)
𝑐3 + 𝑡2 , with 𝑐3 = 10.14 days.

The constant 𝑐3 represents the mean time between vulnerabilities
and was set to 30.42 days by McQueen et al. [18] based on a threat
intelligence report from 2004 (the following papers used the same
constant). In 2023 Google’s threat intelligence team tracked 36 zero-
day vulnerabilities which targeted enterprise-focused technologies

6https://docs.metasploit.com/docs/using-metasploit/intermediate/exploit-
ranking.html [Accessed 18 Nov 2024]

https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/general/nvd-dashboard
https://docs.metasploit.com/docs/using-metasploit/intermediate/exploit-ranking.html
https://docs.metasploit.com/docs/using-metasploit/intermediate/exploit-ranking.html
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[30]. Based on Google’s review of zero-day vulnerabilities, we up-
date the value to 𝑐3 = 36/365 = 10.14 (on average, there was a new
zero-day vulnerability targeting enterprise-focused technologies
every 10.14 days in 2023).

Implementation and Conclusion. The proposed TTC computa-
tion is applied by determining the TTC for each asset instance
within our cloud-native application, including containers, pods,
and the cluster itself. For containers, this is directly derived from
their associated vulnerabilities and misconfigurations. The TTC
of a pod is derived by considering the vulnerabilities and miscon-
figurations of the container with the lowest TTC, combined with
any pod-specific issues. Overall, the number of vulnerabilities and
misconfigurations in a component has a much stronger impact on
lowering the TTC for novice and beginner attackers than for expert
attackers. This reflects the intended model behavior: less skilled
attackers rely heavily on the presence of multiple vulnerabilities,
whereas expert attackers can often succeed with fewer or more
subtle weaknesses. This approach leverages system-specific CTI to
provide a data-driven and objective estimation of the time required
for an attacker to compromise each asset, moving beyond subjective
expert assessments. The resulting quantitative TTC metric offers
several key advantages. It enables organizations to prioritize secu-
rity efforts by identifying high-risk assets, facilitates measurable
evaluation of the system’s security posture, and provides rapid, in-
tuitive insights into its current state. Moreover, the computational
model underpinning TTC allows for the automated and dynamic
assessment of the relative efficacy of security interventions, such
as vulnerability remediation, thereby informing strategic resource
allocation to optimize the security of Kubernetes applications.

6 Attack Graph Generation
In the final step of the ThreatCompute pipeline, we use the sys-
tem model, the LLM-generated threat model, and the component-
specific TTC values to simulate adversarial behavior and generate
an attack graph. A graph represents a structured view of feasi-
ble attack paths through the system, enabling both qualitative
and quantitative risk analysis. While the threat model operates
at the asset-technique level (e.g., “Application Container”→ “Ex-
ploit Public-Facing Application”), the attack graph refines this to
the instance-technique level, mapping abstract threats to concrete
system components.

6.1 Graph Generation Algorithm
The graph generation algorithm simulates attacker behavior by
performing guided random walks through the threat model. Each
step in a walk is influenced by two key constraints: the system
architecture, which enforces consistency with the structural rela-
tionships between components, and the TTC values, which bias
the selection toward components that are easier to compromise
(i.e., those with lower TTC). We adopt a weighted random walk
approach rather than a shortest-path algorithm in order to model
an attacker who lacks complete knowledge of the system and does
not necessarily pursue specific high-value targets. Instead, the at-
tacker explores the environment opportunistically from their initial
access point. This approach follows the principles of MAL-based

Algorithm 1: Attack graph generation.
Input: Threat model 𝑇𝑀 = (𝑁𝑇𝑀 , 𝐸𝑇𝑀 )

System model 𝑆𝑀 = (𝑁𝑆𝑀 , 𝐸𝑆𝑀 )
Maximum walk length𝑀

Attacker skill level skill
Output: Attack graph 𝐴𝐺 = (𝑁𝐴𝐺 , 𝐸𝐴𝐺 )
Compute 𝜏 (𝑣, skill) for all 𝑣 ∈ 𝑁𝑆𝑀

Init 𝐴𝐺 = (∅, ∅)
Init 𝐼𝐴 = {(𝑡1, 𝑖1), . . . } where IsInitialAccess(𝑡𝑙 )
for 𝑘 = 1 to 𝑁 do

Sample start (𝑡0, 𝑖0) ∈ 𝐼𝐴 with weight 1/𝜏 (𝑖𝑙 )
Set walk𝑊 = [(𝑡0, 𝑖0)]
walk_successful← false
for 𝑠 = 1 to𝑀 do

𝑆 ←
{
(𝑡𝑙𝑠 , 𝑖𝑙𝑠 )

�� (
𝑎(𝑖𝑠−1), 𝑎(𝑖𝑙𝑠 )

)
∈ 𝐸𝑇𝑀 ,

𝑡𝑙𝑠 ∈ 𝑇𝑇𝑀
(
𝑎(𝑖𝑠−1), 𝑎(𝑖𝑠 )

)}
𝑆 ← FilterFeasible(𝑆)
if 𝑆 = ∅ then

break

Sample (𝑡𝑠 , 𝑖𝑠 ) ∈ 𝑆 with weight 1/𝜏 (𝑖𝑙𝑠 )
Append (𝑡𝑠 , 𝑖𝑠 ) to𝑊
if IsImpact(𝑡𝑠 ) then

walk_successful← true
break

if walk_successful then
Add visited instances to 𝑁𝐴𝐺

Add edges (𝑖𝑠−1 → 𝑖𝑠 ) with technique 𝑡𝑠 to 𝐸𝐴𝐺
return 𝐴𝐺

attack graph generation described by Wideł et al. [35], in which at-
tacker decision-making is represented as a probabilistic traversal of
the threat model. The complete procedure is given in Algorithm 1,
with notation summarized in Table 3. The resulting attack graph
𝐴𝐺 = (𝑁𝐴𝐺 , 𝐸𝐴𝐺 ) consists of:
• Nodes (𝑁𝐴𝐺 ): a subset of systemmodel components (𝑁𝐴𝐺 ⊆
𝑁𝑆𝑀 ).
• Edges (𝐸𝐴𝐺 ): attack techniques executed between instances,
labeled with the applied technique 𝑇𝐴𝐺 (𝑖, 𝑗) and annotated
by their TTC value 𝜏𝑖 𝑗 .

Each threat model node 𝑛 ∈ 𝑁𝑇𝑀 is mapped to one or more con-
crete instances in the system model 𝑆𝑀 = (𝑁𝑆𝑀 , 𝐸𝑆𝑀 ). During
traversal, when a threat model edge is followed, the algorithm se-
lects a corresponding instance pair in 𝑆𝑀 , weighted by TTC, and
extends the walk with that step.

The process begins by computing all TTC values, initializing
an empty attack graph, and identifying all valid starting steps
𝐼𝐴, i.e., steps associated with techniques of type Initial Access
(IsInitialAccess). Each walk then starts from a sampled step in
𝐼𝐴 and proceeds iteratively. For each step, the set of possible next
moves 𝑆 is determined from the threat model. Candidate steps 𝑆 are
then filtered by the procedure FilterFeasible, which ensures that:
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Table 3: Notation for attack graph generation.

Parameter Definition

𝑁𝑇𝑀 , 𝐸𝑇𝑀 Nodes, Edges of threat model 𝑇𝑀
𝑁𝑆𝑀 , 𝐸𝑆𝑀 Nodes, Edges of system model 𝑆𝑀
𝑁𝐴𝐺 , 𝐸𝐴𝐺 Nodes, Edges of attack graph 𝐴𝐺 with 𝑁𝐴𝐺 ⊆ 𝑁𝑆𝑀

𝑎(𝑖) ∈ 𝑁𝑇𝑀 Asset type of system instance 𝑖 ∈ 𝑁𝑆𝑀

𝐼 (𝑖) = { 𝑗 ∈ 𝑁𝑆𝑀 : 𝑖 ∈ 𝑁𝑇𝑀 ∧ 𝑎( 𝑗) = 𝑖} Set of system instances belonging to asset 𝑖 ∈ 𝑁𝑇𝑀

𝑇𝑇𝑀 (𝑖, 𝑗) for edge (𝑖, 𝑗) ∈ 𝐸𝑇𝑀 Set of techniques from asset 𝑖 to 𝑗

𝑇𝐴𝐺 (𝑖, 𝑗) for edge (𝑖, 𝑗) ∈ 𝐸𝐴𝐺 Set of techniques from instance 𝑖 to 𝑗

𝜏𝑖 𝑗 = 𝜏 ( 𝑗) TTC for edge (𝑖, 𝑗) ∈ 𝐸𝐴𝐺
(𝑡𝑠 , 𝑖𝑠 ) with 𝑖𝑠 ∈ 𝑁𝑆𝑀 Attack step 𝑠 from instance 𝑖𝑠−1 to 𝑖𝑠 with technique 𝑡𝑠 ∈ 𝑇𝑇𝑀 (𝑎(𝑖𝑠−1), 𝑎(𝑖𝑠 ))
𝑊 = ((𝑡0, 𝑖0), (𝑡1, 𝑗1), · · · ) Attack path, sequence of attack steps

(i) a valid path exists in the system model between the previously
compromised instance 𝑖𝑠−1 and the candidate instance 𝑖𝑙𝑠 ; (ii) the
tactic required for 𝑡𝑙𝑠 has already been satisfied by earlier steps in
the walk; and (iii) the step does not correspond to the Initial Access
tactic, which is only allowed at the beginning of the attack. A feasi-
ble next step is then sampled from the filtered set 𝑆 according to
TTC weights. Walks terminate when the maximum step length𝑀 is
reached, when no feasible steps remain, or when a technique of the
tactic Impact is achieved (IsImpact). Only successful walks—those
that reach the Impact phase—are aggregated into the final attack
graph.

Attack Graph–Based Security Assessment. The resulting attack
graph and the set of successful attack paths serve as a foundation
for both quantitative and qualitative security assessments. For qual-
itative analysis, visualizing the attack graph reveals frequently tra-
versed components, with node sizes reflecting traversal frequency
(e.g., Figure 3). This allows analysts to identify high-risk instances
that exhibit low TTC values, appear across multiple attack chains,
and connect diverse parts of the system. These nodes represent
critical points of compromise and propagation, offering insight
into attack origins and lateral movement potential. For quantitative
analysis, we follow Wideł et al. [35] to compute a global TTC score
for the system. This score is obtained by identifying the minimal-
cost attack path-the successful path with the lowest cumulative
TTC. This path reflects the most efficient route an attacker could
exploit and serves as a lower bound for system compromise time.
The global TTC metric can be used as a quantitative risk indicator
to guide security prioritization and system hardening.

6.2 Data-Driven Validation Across the Pipeline
A key challenge in evaluating automated attack graph generation is
the lack of a universally accepted ground truth. To address this, we
designed the ThreatCompute framework to be data-driven and
mutually validating at every level of the pipeline:

Threat Modeling The LLM-generated threat hypotheses are
grounded in the complete system model and constrained by
the Microsoft Threat Matrix for Kubernetes, ensuring that
only realistic and domain-relevant tactics and techniques
are considered.

Time-To-Compromise This quantitative metric is computed
for each system component using vulnerability and miscon-
figuration data retrieved from Kubernetes security scanners.
It provides a probabilistic estimate of exploitability that is
grounded in component-specific, real-world security data.

Attack Graph Generation The final attack graph incorpo-
rates both the threat model and TTC values. Importantly,
each simulated attack step is validated for feasibility within
the system model, ensuring that no synthetic paths are in-
troduced.

This multi-level integration not only ensures completeness and
realism, but also allows for cross-checking between the layers. For
example, if a component is targeted by many attack techniques
in the threat model but has a very high TTC, it will rarely appear
in the final attack graph—reflecting its low practical exploitability.
Conversely, if a component has a low TTC but was underrepre-
sented in the threat model, it may still emerge prominently in
the graph due to its high attack attractiveness. In this way, TTC
and the threat model act as checks on each other, and the attack
graph synthesizes both to reflect likely attack paths. This mutual
validation structure serves as a form of internal consistency, demon-
strating that the generated attack graph is not only grounded in
real data but also reflects systemic security dynamics—even in the
absence of explicit ground truth. Importantly, our goal is not to
produce a complete enumeration of all possible attack paths, but
rather to generate a realistic and actionable sample of high-impact
paths that reflect the most likely adversarial behavior given the
current system state. A fully exhaustive graph would include many
improbable paths, potentially overwhelming security teams with
low-priority findings. By using risk-weighted sampling guided by
TTC and constrained threat modeling, our approach focuses on
meaningful attack trajectories that are grounded in system-specific
vulnerabilities, privileges, and exposure. This targeted sampling ap-
proach makes the framework significantly more scalable, especially
in large and dynamic Kubernetes environments where the number
of possible paths grows rapidly with system complexity. Instead of
attempting to model the full attack space, ThreatCompute con-
centrates computational and analytical effort on the most relevant
threats—supporting efficient, high-value security assessments at
scale.
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7 Evaluation
We evaluate the ThreatCompute using two publicly available Ku-
bernetes applications: Kubernetes Goat 7 and Kubernetes Goof 8.
Both applications are intentionally insecure and designed for secu-
rity training and testing, making them ideal candidates for demon-
strating the effectiveness of our automated threat modeling ap-
proach.

Both application were deployed locally using KIND (Kubernetes
in Docker)9. We configured the clusters with the security scan-
ners Trivy and Kubescape operators to extract vulnerability and
misconfiguration data used throughout the analysis.

7.1 Threat Model Evaluation
For all threat modeling steps, we employed the open-source LLM
mistral-nemo with a temperature of 0.3, following Mistral AI’s
recommendations10. We selected this model based on preparatory
experiments in which it consistently produced relevant and de-
tailed outputs. An additional advantage is its lack of moderation
filters, which is crucial in cybersecurity contexts where accurate
threat modeling requires unrestricted reasoning about adversarial
behavior.

Qualitative Analysis. Evaluating automated threat modeling re-
mains inherently challenging, as the process is typically performed
by human experts and lacks a definitive ground truth [38]. Even for
the same system, expert-generated threat models can differ signifi-
cantly depending on decisions about asset granularity, technique
categorization, and attacker assumptions. This variability compli-
cates direct comparisons and highlights the need for data-driven,
repeatable methodologies. ThreatCompute addresses this by offer-
ing a systematic, automated pipeline for generating threat models
based on real system data and established threat taxonomies. Our
framework aims to fill the gap in fully automated threat model-
ing for Kubernetes systems. However, the absence of comparable
systems also means there is no comprehensive ground truth for
direct validation. As a result, we focus our evaluation on trans-
parency of the modeling process and plausibility of the output,
using Kubernetes Goat documentation as a reference point.

The graph in Figure 2 illustrates the threat model generated for
Kubernetes Goat, showing identified attack techniques between var-
ious asset classes. Core assets include namespace, cluster, RootShell,
Pod, and several refined Container categories, such as Application
Container, Networking, and Storage. The edge thickness encodes
the number of techniques identified between asset pairs. In total,
the threat model contains 98 edges and 449 techniques, with an
average of 4.6 techniques per edge. Table 1 presents selected ex-
ample techniques generated for Kubernetes Goat. These examples
show that the identified techniques are context-specific and align
with the known configuration and vulnerabilities of the analyzed
system components, demonstrating both system-awareness and
semantic relevance. Appendix A displays the threat model graph
for Kubernetes Goof, which shows similar results.

7https://madhuakula.com/kubernetes-goat/
8https://github.com/snyk-labs/kubernetes-goof/
9https://kind.sigs.k8s.io/
10https://huggingface.co/mistralai/Mistral-Nemo-Base-2407

Comparison with Kubernetes Goat Ground Truth. To evaluate
the quality and completeness of our generated threat model, we
compared it to the scenarios provided by Kubernetes Goat. These
scenarios are written in a tutorial format and mapped to techniques
from Microsoft’s Threat Matrix for Kubernetes, making them a
practical benchmark for evaluating both technique discovery and
relevance. To prepare the ground truth, we used ChatGPT-4 to
summarize each attack scenario and generate concise descriptions
of how each listed technique was applied. These outputs were then
reviewed and validated by a security analyst to ensure accuracy and
relevance. This hybrid approach enabled a consistent baseline for
comparison while incorporating expert oversight to enhance the
credibility of the evaluation. We assessed our model’s performance
on two dimensions:
• Technique Discovery Rate: The percentage of techniques
correctly identified by our framework compared to those
used in Kubernetes Goat scenarios (based on the Microsoft
Threat Matrix for Kubernetes [19]).
• Technique Description Quality: A qualitative comparison
of our generated technique descriptions with those derived
from the official scenarios.

Our framework successfully identified 29 out of the 30 techniques
used across the Kubernetes Goat scenarios, achieving a 93% discov-
ery rate. This demonstrates strong coverage of known adversarial
behavior in Kubernetes environments.

To assess the quality of the technique descriptions, we applied
the LLM-as-a-judge evaluation method, as proposed by Verga et
al. [33]. Specifically, we used a Panel of LLM Evaluators (PoLL),
with mistral-nemo and llama3.3-70B independently rating each
technique description on a scale from 1 to 10, where 10 indicates
perfect alignment with the expected behavior. The average rating
across all evaluated descriptions was 6.62. To contextualize this
score, we conducted a small baseline evaluation using four ground
truth descriptions. The original description evaluated against itself
received an average score of 9.5, a slightly rephrased version scored
7.13, and a description of a completely different technique received
a score of 3.0. These results suggest that our model-generated
descriptions are generally perceived as semantically aligned with
the ground truth, though not perfectly identical. The baseline gap
between rephrased (–2.75 points) and unrelated (–7.75 points) de-
scriptions provides a reference scale for interpreting the 6.62 score.

While human evaluation would offer an additional layer of vali-
dation and remains an important direction for future work, prior
studies have shown that panels of diverse LLMs can approximate hu-
man judgments with high consistency in text evaluation tasks [33].
Our use of multiple high-performingmodels helps reduce individual
model bias and supports scalable, repeatable evaluation.

7.2 Attack Graph Evaluation
To evaluate the final stage of our framework, we generated attack
graphs based on the threat models for the two applications: Kuber-
netes Goat and Kubernetes Goof. We focus on Kubernetes Goat here,
while results for Goof—showing similar patterns—are provided in
Appendix B.

7.2.1 Example Attack Graphs. The attack graph for Kubernetes
Goat was generated assuming an attacker with intermediate skill

https://madhuakula.com/kubernetes-goat/
https://github.com/snyk-labs/kubernetes-goof/
https://kind.sigs.k8s.io/
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
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Figure 3: Attack graph for Kubernetes Goat based on 200
simulated walks through the threat model.
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executing commands or scripts that remove or modify files or
databases used by the Pod.

Figure 4: Shortest attack path leading to ’Data Destruction’
in Kubernetes Goat.

level. We performed 200 simulated attack walks through the threat
model (Figure 2), each limited to 15 steps. The number of walks
was selected empirically, based on convergence in both the number
of unique nodes/edges and the technique coverage, as shown in
Figure 5 and Figure 7. Figure 3 shows the resulting attack graph,
which aggregates the 122 walks (61%) that successfully reached an
“Impact” tactic. These completed attack paths reveal a diverse set of
outcomes: 39% ended in Data Destruction, 32% resulted in Denial of
Service, and 29% led to Resource Hijacking.

The graph contains a large number of nodes and edges, reflecting
the system’s complexity and potential attack surface. Node sizes
indicate how frequently a component appears in successful attack
paths. For example, Pod health-check-deployment-66fc89bc49-kk4dz
(ID: 20) was targeted in 219 attack steps—a result of its low TTC of
1.06 days. This component also features prominently in the shortest-
cost attack path, shown in Figure 4. This example path starts from
a General Container (health-check) and concludes with the Data
Destruction impact on the same Pod. The total TTC for the path is
4.2 days. These case-specific paths allow targeted analysis of system
weaknesses and demonstrate how low-TTC nodes influence attack
feasibility and path selection.

7.3 Attack Graph Analysis
To better understand the behavior of the attack graph generation
process and the influence of TTC and attacker skill, we conducted
a deeper analysis. Specifically, we examined (1) the convergence
of the generated graph to the system model, (2) how attacker skill
levels shape attack paths, and (3) the coverage of the ATT&CK
Matrix as the number of simulations increases. We generated at-
tack graphs for both Kubernetes Goat and Kubernetes Goof across
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Figure 5: Number of nodes and edges in the attack graph as
the number of walks increases.

four different attacker skill levels. For clarity and due to space con-
straints, we present here the results for an intermediate attacker
in Kubernetes Goat. Each graph was generated by performing 1
to 200 walks through the threat model, and various statistics were
collected across this range. Key results are shown in Figures 5, 6,
and 7.

Convergence Toward the System Model. Figure 5 shows how the
number of nodes and edges in the attack graph evolves as more
walks are performed. The number of nodes steadily approaches that
of the full system model, indicating that the attack graph becomes
increasingly complete over time. In contrast, the number of edges
grows more rapidly and eventually exceeds the edge count of the
systemmodel. This is due to attackers bypassing intermediate layers
and connecting components in ways that reflect realistic attack
behavior but are not explicitly defined in the system architecture.
For instance, an attacker might establish a direct connection from
a container to a cluster, creating an edge in the attack graph that is
absent in the system model. In the system model, such a connection
would typically traverse multiple levels: from container to pod, pod
to namespace, and namespace to cluster. Thus, while the nodes in
the attack graph form a subset of the nodes in the system model,
the sets of edges exhibit partial overlap due to such attack-specific
paths.

Influence of Attacker Skill Level. Attacker skill levels significantly
influence how attack paths are formed. For lower-skilled attackers,
the number of vulnerabilities and misconfigurations in a system
component has a greater impact on its computed TTC. This leads
to more pronounced differences between TTC values across compo-
nents, resulting in a more concentrated attack pattern. In contrast,
for higher-skilled attackers, the TTC values are more evenly dis-
tributed across components, which encourages broader exploration
of the system. As shown in Figure 6, beginner attackers tend to
repeatedly select a small number of highly vulnerable components
as starting points, whereas intermediate and expert attackers dis-
tribute their choices more evenly. This behavior also influences
the growth of the attack graph: lower-skilled attackers generate
fewer nodes and edges due to their narrower focus. For intermedi-
ate attackers, the most frequently selected starting point was the
health-check container, which had the lowest TTC in the system.
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Figure 7: Coverage of ATT&CK techniques for increasing
number of walks through the threat model.

Threat Matrix Technique Coverage. Figure 7 tracks the growth
of technique coverage of the Threat Matrix for Kubernetes as the
number of attack walks increases. As expected, more walks lead to
broader coverage of the Threat Matrix for Kubernetes. However,
some tactics such as Collection and Exfiltration remain underrep-
resented. This is primarily due to the limitations of the system
model, which lacks explicit representations of sensitive data or data
movement channels. Incorporating such domain knowledge could
improve coverage in these areas, particularly for data-centric attack
phases.

8 Discussion and Future Work
ThreatCompute demonstrates the feasibility of structured, LLM-
driven threat modeling and attack graph generation for complex
cloud-native systems. By guiding LLMs through a modular pipeline
and grounding the threat modeling process in the Microsoft Threat
Matrix for Kubernetes, we mitigate open-ended hallucinations and
ensure relevance to the Kubernetes security domain.

Ensuring the completeness and correctness of LLM-generated
threat models remains an open challenge.While we constrainmodel
outputs using theMicrosoft Threat Matrix for Kubernetes [19] to en-
sure consistency and alignment with known adversarial behaviors,

this scope inherently limits the coverage of threats to those al-
ready captured in the matrix. As a result, novel or less-documented
techniques may be missed. Furthermore, the reasoning capacity of
general-purpose LLMs may fall short in identifying attacks that rely
on implicit architectural flaws or emergent behaviors not visible in
the static systemmodel. Future work could explore fine-tuned LLMs
trained on domain-specific CTI, or employ retrieval-augmented gen-
eration using structured knowledge bases or security reports to
enrich threat hypotheses.

Our modular design follows the divide and conquer principle,
enabling more precise prompts and improved reasoning within
each step. This structure also facilitates extensibility: components
of the pipeline can be independently upgraded or replaced with
more specialized models or tools (e.g., for vulnerability scanning
or risk quantification). Incorporating structured threat intelligence
via knowledge graphs could further improve the accuracy and
explainability of generated models.

Beyond static risk assessment, generated attack graphs can be
leveraged for automated attack emulation and defense simulation
[27]. Integrating ThreatCompute with red/blue team tools or cy-
ber range platforms could enable dynamic scenario generation and
support adversarial training. Moreover, modeling attacker incen-
tives or costs may lead to more realistic threat prioritization in
practice.

9 Conclusion
We introduced ThreatCompute, a fully automated threat model-
ing framework for Kubernetes-based systems. Traditional threat
modeling is manual and time-consuming making it unsuited for the
complexity and scale of cloud-native environments. ThreatCom-
pute addresses this by using large language models to generate
system-specific threat hypotheses based on real configuration and
vulnerability data. Our approach connects high-level threat frame-
works like MITRE ATT&CK with low-level system data through
modular prompting and a structured graph representation of the
system. This enables the LLM to generate realistic tactic-technique
mappings and produce attack graphs that are both interpretable
and relevant. This provides a significant advantage over traditional
tools, which often struggle to contextualize vulnerabilities or sug-
gest meaningful attack paths without extensive manual input. We
further quantify risk using an adapted Time-to-Compromise model
tailored for Kubernetes environments. This enables the prioritiza-
tion of attack paths based on risk, helping security teams focus on
the most critical threats. Unlike existing tools, ThreatCompute
requires minimal manual input while maintaining coverage and
contextual accuracy. Ultimately, this framework demonstrates that
LLMs can streamline attack graph generation, reducing manual
effort while maintaining high relevance. Future work can refine
model selection, enhance data inputs, and expand applications to
attack emulation and adversarial simulations.

Acknowledgments
This work was supported by the EU Horizon Europe programme,
project SLICES-PP (10107977), and by the Bavarian Ministry of
Economic Affairs, Regional Development and Energy, project 6G
Future Lab Bavaria.



Leveraging LLMs for Automated Threat Modeling of Cloud-Native Applications CCSW ’25, October 13–17, 2025, Taipei, Taiwan

References
[1] Ehsan Aghaei, Xi Niu, Waseem Shadid, and Ehab Al-Shaer. 2022. SecureBERT: A

Domain-Specific Language Model for Cybersecurity. arXiv:2204.02685 [cs.CL]
[2] Mohamed Ahmed, Sakshyam Panda, Christos Xenakis, and Emmanouil Panaousis.

2022. MITRE ATT&CK-driven cyber risk assessment. In Proceedings of the 17th
International Conference on Availability, Reliability and Security. 1–10.

[3] Md Tanvirul Alam, Dipkamal Bhusal, Youngja Park, and Nidhi Rastogi. 2023.
Looking Beyond IoCs: Automatically Extracting Attack Patterns from External
CTI. arXiv:2211.01753 [cs.CR]

[4] The Kubernetes Authors. 2023. Kubernetes Documentation: Concepts - Overview.
https://kubernetes.io/docs/concepts/overview/. Accessed: 2024-08-25.

[5] Casey Charrier and Robert Weiner. 2024. How Low Can You Go? An Analysis of
2023 Time-to-Exploit Trends. Technical Report. Mandiant. https://cloud.google.
com/blog/topics/threat-intelligence/time-to-exploit-trends-2023

[6] Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu,
Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass. 2024. PentestGPT:
Evaluating and Harnessing Large Language Models for Automated Penetration
Testing. In 33rd USENIX Security Symposium (USENIX Security 24). USENIX Asso-
ciation, Philadelphia, PA. https://www.usenix.org/conference/usenixsecurity24/
presentation/deng

[7] Isra Elsharef, Zhen Zeng, and Zhongshu Gu. 2024. Facilitating Threat Modeling
by Leveraging Large Language Models. (2024).

[8] Viktor Engström, Pontus Johnson, Robert Lagerström, Erik Ringdahl, and Max
Wällstedt. 2023. Automated Security Assessments of Amazon Web Services
Environments. ACM Trans. Priv. Secur. 26, 2, Article 20 (March 2023), 31 pages.
doi:10.1145/3570903

[9] Viktor Engström and Robert Lagerström. 2022. Two decades of cyberattack
simulations: A systematic literature review. Computers & Security 116 (2022),
102681.

[10] Scott Freitas, Jovan Kalajdjieski, Amir Gharib, and Robert McCann. 2025. AI-
Driven Guided Response for Security Operation Centers with Microsoft Copilot
for Security. In Companion Proceedings of the ACM on Web Conference 2025
(Sydney NSW, Australia) (WWW ’25). Association for Computing Machinery,
New York, NY, USA, 191–200. doi:10.1145/3701716.3715209

[11] Simon Hacks, Sotirios Katsikeas, Engla Ling, Robert Lagerström, and Mathias
Ekstedt. 2020. powerLang: a probabilistic attack simulation language for the
power domain. Energy Informatics 3 (2020), 1–17.

[12] Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. 2018. A meta language
for threat modeling and attack simulations. In Proceedings of the 13th international
conference on availability, reliability and security. 1–8.

[13] Sotirios Katsikeas, Simon Hacks, Pontus Johnson, Mathias Ekstedt, Robert Lager-
ström, Joar Jacobsson, Max Wällstedt, and Per Eliasson. 2020. An Attack Sim-
ulation Language for the IT Domain. In Graphical Models for Security, Harley
Eades III and Olga Gadyatskaya (Eds.). Springer International Publishing, Cham,
67–86.

[14] Sotirios Katsikeas, Pontus Johnson, Simon Hacks, and Robert Lagerström. 2019.
Probabilistic Modeling and Simulation of Vehicular Cyber Attacks: An Applica-
tion of the Meta Attack Language.. In ICISSP. 175–182.

[15] Nick Kirtley. 2022. PASTA Threat Modeling. https://threat-modeling.com/pasta-
threat-modeling/. Accessed: 2024-08-25.

[16] Alyzia-Maria Konsta, Alberto Lluch Lafuente, Beatrice Spiga, and Nicola Dragoni.
2024. Survey: Automatic generation of attack trees and attack graphs. Computers
& Security 137 (2024), 103602. doi:10.1016/j.cose.2023.103602

[17] Khang Mai, Jongmin Lee, Razvan Beuran, Ryosuke Hotchi, Sian En Ooi, Takayuki
Kuroda, and Yasuo Tan. 2025. RAF-AG: Report analysis framework for attack
path generation. Computers & Security 148 (2025), 104125. doi:10.1016/j.cose.
2024.104125

[18] Miles A McQueen, Wayne F Boyer, Mark A Flynn, and George A Beitel. 2006.
Time-to-compromise model for cyber risk reduction estimation. In Quality of
Protection: Security Measurements and Metrics. Springer, 49–64.

[19] Microsoft. 2021. ThreatMatrix for Kubernetes. https://microsoft.github.io/Threat-
Matrix-for-Kubernetes/. Accessed: 2024-08-21.

[20] Microsoft Corporation. 2009. The STRIDE Threat Model. https://learn.microsoft.
com/en-us/previous-versions/commerce-server/ee823878(v=cs.20). Accessed:
2024-08-25.

[21] Dmitry Namiot and Manfred sneps sneppe. 2014. On Micro-services Architecture.
Interenational Journal of Open Information Technologies 2 (09 2014), 24–27.

[22] Ana Maria Pirca and Harjinder Singh Lallie. 2023. An empirical evaluation of
the effectiveness of attack graphs and MITRE ATT&CK matrices in aiding cyber
attack perception amongst decision-makers. Computers & Security 130 (2023),
103254. doi:10.1016/j.cose.2023.103254

[23] Renascence Tarafder Prapty, Ashish Kundu, and Arun Iyengar. 2024. Using
Retriever Augmented Large Language Models for Attack Graph Generation.
arXiv:2408.05855 [cs.CR] https://arxiv.org/abs/2408.05855

[24] Engla Rencelj Ling and Mathias Ekstedt. 2023. Estimating time-to-compromise
for industrial control system attack techniques through vulnerability data. SN
Computer Science 4, 3 (2023), 318.

[25] Dipayan Saha, Hasan Al Shaikh, Shams Tarek, and Farimah Farahmandi. 2025.
ThreatLens: LLM-guided ThreatModeling and Test Plan Generation for Hardware
Security Verification. Cryptology ePrint Archive, Paper 2025/561. https://eprint.
iacr.org/2025/561

[26] Erik Schluntz and Barry Zhang. 2024. Building Effective AI Agents. https://www.
anthropic.com/engineering/building-effective-agents Anthropic Engineering
Blog, accessed June 24, 2025.

[27] Ömer Sen, Bozhidar Ivanov, Martin Henze, and Andreas Ulbig. 2023. Investiga-
tion of Multi-stage Attack and Defense Simulation for Data Synthesis. In 2023
International Conference on Smart Energy Systems and Technologies (SEST). IEEE,
1–6.

[28] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond Rahman.
2020. Xi commandments of kubernetes security: A systematization of knowledge
related to kubernetes security practices. 2020 IEEE Secure Development (SecDev)
(2020), 58–64.

[29] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. 2002. Automated
generation and analysis of attack graphs. In Proceedings 2002 IEEE Symposium on
Security and Privacy. 273–284. doi:10.1109/SECPRI.2002.1004377

[30] Maddie Stone and James Sadowski. 2024. A Year in Review of Zero-Days Exploited
In-the-Wild in 2023. https://storage.googleapis.com/gweb-uniblog-publish-prod/
documents/Year_in_Review_of_ZeroDays.pdf Analyzes zero-day vulnerabilities
actively exploited in 2023 and offers recommendations for ecosystem security..

[31] Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G
Pennington, and Cody B Thomas. 2018. Mitre att&ck: Design and philosophy. In
Technical report. The MITRE Corporation.

[32] David Tayouri, Nick Baum, Asaf Shabtai, and Rami Puzis. 2022. A Survey of Mul-
VAL Extensions and Their Attack Scenarios Coverage. arXiv:2208.05750 [cs.CR]
https://arxiv.org/abs/2208.05750

[33] Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus,
Arkady Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. 2024.
Replacing Judges with Juries: Evaluating LLMGenerations with a Panel of Diverse
Models. arXiv:2404.18796 [cs.CL] https://arxiv.org/abs/2404.18796

[34] LingyuWang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia. 2008. An
attack graph-based probabilistic security metric. In Data and Applications Security
XXII: 22nd Annual IFIP WG 11.3 Working Conference on Data and Applications
Security London, UK, July 13-16, 2008 Proceedings 22. Springer, 283–296.

[35] Wojciech Wideł, Simon Hacks, Mathias Ekstedt, Pontus Johnson, and Robert
Lagerström. 2023. The meta attack language - a formal description. Computers &
Security 130 (2023), 103284. doi:10.1016/j.cose.2023.103284

[36] Tingmin Wu, Shuiqiao Yang, Shigang Liu, David Nguyen, Seung Jang, and Al-
sharif Abuadbba. 2025. ThreatModeling-LLM: Automating Threat Modeling
using Large Language Models for Banking System. arXiv:2411.17058 [cs.CR]
https://arxiv.org/abs/2411.17058

[37] Wenjun Xiong, Simon Hacks, and Robert Lagerström. 2021. A method for assign-
ing probability distributions in attack simulation languages. Complex Systems
Informatics and Modeling Quarterly 26 (2021), 55–77.

[38] Wenjun Xiong and Robert Lagerström. 2019. Threat modeling–A systematic
literature review. Computers & security 84 (2019), 53–69.

[39] Kengo Zenitani. 2023. Attack graph analysis: An explanatory guide. Computers
& Security 126 (2023), 103081. doi:10.1016/j.cose.2022.103081

[40] Andrej Zieger, Felix Freiling, and Klaus-Peter Kossakowski. 2018. The 𝛽-Time-
to-Compromise Metric for Practical Cyber Security Risk Estimation. In 2018 11th
International Conference on IT Security Incident Management & IT Forensics (IMF).
115–133. doi:10.1109/IMF.2018.00017

A Kubernetes Goof Threat Model
Figure 8 shows the threat model graph for Kubernetes Goof.

B Kubernetes Goof Attack Graph
The attack graph for Kubernetes Goof is shown in Figure 9 and
Table 4 shows the shortest attack path for the ’Resource Hijacking’
technique in Kubernetes Goof. For Kubernetes Goat, 158 of the 200
walks ended with a successful attack path (i.e., reached the ’Impact’
tactic). Among the successful walks, 3.8% ended with the ’Data
Destruction’ technique, 75.3% with ’Denial of Service’, and 20.9%
with ’Resource Hijacking’. With a maximum walk length of 15, the
average number of steps per path was 6.1, and the average number
of involved system instances per path was 1.78, with 80 paths
involving only one instance. With 283 traversals, Pod webadmin-
58d6fb9cbd-gzxfp (id: 2) was traversed the most often, which can
be explained by its low TTC value of 1.06 days.
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Table 4: Shortest attack path for Kubernetes Goof for ’Impact’ technique ’Resource Hijacking’.

Source Node:
Source Instance

Target Node:
Target Instance

Technique Description

Application Container:
webadmin

Application Container:
webadmin

Using
cloud credentials

Attackers can exploit misconfigured or exposed cloud credentials, such as AWS
access keys or Google Cloud service accounts, to gain initial access to the cluster.
This can be achieved by scanning for exposed credentials, exploiting known
vulnerabilities in cloud services, or using social engineering techniques to obtain
valid credentials.

Application Container:
webadmin

Application Container:
webadmin

Privileged
container

An attacker can exploit the fact that some containers in the application are privi-
leged to escalate privileges. By gaining access to these containers, the attacker can
execute commands with elevated privileges, potentially leading to unauthorized
access to sensitive data or control of the application.

Application Container:
webadmin

Application Container:
webadmin

Application
exploit (RCE)

An attacker can exploit a vulnerability in the application running within the
container to remotely execute arbitrary commands, potentially leading to privilege
escalation or data exfiltration.

Application Container:
webadmin

Application Container:
webadmin

Container
service account

An attacker could create a service account with excessive privileges and use it to
run a malicious container. This container could maintain persistence by modifying
system resources or creating new containers.

Application Container:
webadmin

Application Container:
webadmin

Resource
Hijacking

Attackers can exploit misconfigurations, such as running containers as root or
not setting resource limits, to consume all available resources on the ’Application
Container’. This could be done by running resource-intensive processes or by
exploiting a vulnerability in one of the affected packages.
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Figure 8: Threat model graph for Kubernetes Goof.
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