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Abstract
AI-based systems, such as Google’s GenCast, have recently rede-
fined the state of the art in weather forecasting, offering more
accurate and timely predictions of both everyday weather and ex-
treme events. While these systems are on the verge of replacing
traditional meteorological methods, they also introduce new vulner-
abilities into the forecasting process. In this paper, we investigate
this threat and present a novel attack on autoregressive diffusion
models, such as those used in GenCast, capable of manipulating
weather forecasts and fabricating extreme events, including hur-
ricanes, heat waves, and intense rainfall. The attack introduces
subtle perturbations into weather observations that are statistically
indistinguishable from natural noise and change less than 0.1 %
of the measurements—comparable to tampering with data from a
single meteorological satellite. As modern forecasting integrates
data from nearly one hundred satellites and many other sources
operated by different countries, our findings highlight a critical
security risk with the potential to cause large-scale disruptions and
undermine public trust in weather forecasting.
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1 Introduction
Weather forecasting plays a central role in our daily life, ranging
from choosing appropriate clothing to managing operation of re-
newable energy systems, agricultural planning, aviation operations,
and disaster risk mitigation. In recent years, weather forecasting
has seen significant advances, with AI-based approaches rapidly
progressing and now beginning to surpass traditional numerical
weather prediction [1, 25, 34].
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Currently, the leading system in this space is GenCast [34], an
autoregressive diffusion model developed by Google. GenCast out-
performs the best traditional medium-range forecasting system,
ENS [13], in both day-to-day accuracy and the prediction of ex-
treme weather events. Due to these advances, major meteorological
institutions, such as the US National Oceanic and Atmospheric Ad-
ministration (NOAA) and the European Centre for Medium-Range
Weather Forecasts (ECMWF), are preparing to incorporate AI-based
approaches into their forecasting systems [17, 26]. With the fre-
quency and intensity of extremeweather events increasing in recent
years, this integration also represents a critical step toward more
effective disaster risk mitigation on a global scale.

However, this shift also introduces a new security risk. Weather
forecasting systems depend on observational data aggregated from
a diverse array of organizations, each operating under different
jurisdictions and guided by distinct institutional incentives [14].
Moreover, the underlying data sources are equally varied, encom-
passing land stations, weather balloons, aircraft, ships, and satel-
lites [16]. This decentralized and fragmented data ecosystem creates
a broad attack surface, offering adversaries multiple opportunities
to tamper with observations. The potential consequences of such
manipulation are severe. Reliable weather warnings, for example,
are indispensable for mitigating harm by enabling timely prepara-
tion and evacuation ahead of extreme events [32].

In this paper, we explore the risk of manipulating AI-based
weather forecasting systems. In particular, we introduce an attack
for creating adversarial observations, subtle changes to measure-
ments that mislead the predictions of a weather model. While our
approach is inspired by prior techniques for generating adversar-
ial inputs [8, 29], it addresses a key challenge specific to weather
models based on autoregressive diffusion, such as GenCast. These
models denoise and condition their input over multiple iterations,
making standard gradient calculation technically infeasible and
limiting the applicability of existing attacks. To overcome this chal-
lenge, we propose a novel approximation of the inference procedure
that enables the computation of effective perturbations, capable of
inducing false weather forecasts, such as fabricating non-existing
extreme events or concealing real ones.

The core idea of our approach is to sample the inference process
of a forecasting model at a tractable number of steps and iteratively
estimate its gradient in reverse. Our approximation balances the
difficulty of the attack by including both small and large noise lev-
els which stabilizes the optimization procedure. To ensure that all
changes remain inconspicuous, we apply a projection operator tai-
lored towards weather observations, which constrains the variance
of each measurement variable. As weather observations naturally
exhibit variance, this projection ensures that the calculated pertur-
bations remain indistinguishable from other sources of noise, such
as measurement inaccuracies and prediction errors.
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To analyze the efficacy of this attack, we conduct an empirical
evaluation across a broad range of geographic locations and time
periods, using GenCast as the target model. Specifically, we con-
struct adversarial observations to induce extreme events at specific
locations, targeting precipitation (e.g., heavy rain), wind (e.g., hur-
ricanes), or temperature (e.g., heat waves). We observe that altering
just 0.1% of the measurements is sufficient to induce false extreme
events and, consequently, trigger early warning systems in practice.
This fraction is smaller than that corresponding to the input from
a single polar-orbiting satellite. Nearly one hundred of these satel-
lites are currently operated by different countries with partially
conflicting political interests. Furthermore, we demonstrate that
an attacker can suppress actual extreme events, hindering timely
preparations and potentially resulting in the loss of human lives.
For example, we alter the predicted path of Hurricane Katrina (2005)
to make it appear as though it would not strike New Orleans.

Our findings reveal a novel security threat that could erode trust
in weather forecasting and have severe real-world consequences.
As a potential defense, we investigate whether adversarial obser-
vations can be detected under theoretically ideal conditions. We
find that detection success rates remain low (<3.1%), indicating
that detection-based strategies are unlikely to be effective in prac-
tice. Given that certifiably robust models are not yet available for
weather forecasting, we argue that large-scale deployment of AI-
based weather models should be delayed unless the underlying data
sources can be fully trusted.

Contributions. In summary, we make the following major contri-
butions in this work:

• Attack on weather forecasting.We present the first attack tar-
geting AI-based weather forecasting. Our attack is capable
of creating adversarial observations that induce misleading
predictions, such as non-existing extreme events, while re-
maining indistinguishable from natural noise.
• Novel attack algorithm. We propose a new algorithm for
generating adversarial inputs for autoregressive diffusion
models. The algorithm gradually approximates the inference
process of weather prediction, achieving higher success rates
than any existing attack.
• Comprehensive evaluation. We demonstrate the threat of ad-
versarial observations by creating fake extreme events for a
wide range of locations and time periods for the current best
AI model GenCast. Additionally, we show that an attacker
can suppress accurate extreme weather predictions.

To foster further research on the robustness of AI-based weather
forecasting and to ensure the reproducibility of our experiments,
we make our code and artifacts publicly available at https://github.
com/mlsec-group/adversarial-observations. We also provide links
to the considered weather datasets and models.

Roadmap. We provide a brief introduction to weather forecasting
in Section 2 before we present our attack in Section 3. Our empirical
analysis is provided in Section 4, andwe investigate the detectability
of the attack in Section 5. We discuss the consequences of our
findings and provide recommendations in Section 6. Finally, we
review related work in Section 7 and conclude in Section 8.

2 Weather Forecasting
The goal of weather forecasting is to predict future weather condi-
tions based on past observations. In this work, we focus on global
weather forecasting, which is concerned with predicting weather
patterns across the entire planet. To this end, the global weather
state of the atmosphere, X ∈ R |𝑊 |× |𝑉 | , is represented as a grid
of nodes𝑊 distributed across the globe. Each node encodes a set
of real-valued variables 𝑉 corresponding to key meteorological
factors, such as temperature, wind speed, and sea level pressure.
By analyzing changes in the weather state over time, it becomes
possible to estimate future conditions on the grid with varying
degrees of confidence. Such forecasts underpin a wide range of
practical applications, from predicting the output of solar and wind
farms [4] to forecasting the paths of tropical cyclones [40].

Traditionally, weather forecasting has relied on numerical weather
prediction (NWP) systems, which simulate the physical interactions
between atmospheric variables to generate forecasts [11, 13]. These
systems have long been the primary tool for global weather predic-
tion. However, developing such models is highly resource-intensive
and demands extensive domain expertise. Moreover, producing
timely forecasts typically requires access to powerful supercomput-
ers due to the substantial computational workload [2].

2.1 Learning-based Weather Prediction
Machine learning-based weather prediction (MLWP) has recently
emerged as an alternative to traditional forecasting. Rather than
simulating physical processes explicitly, these models learn from
historical weather data to infer atmospheric dynamics. This al-
lows them to capture complex relationships between variables that
reflect underlying physical laws. The latest MLWP systems out-
perform traditional methods in both accuracy and speed, produc-
ing high-quality forecasts in under ten minutes on a single com-
puter [1, 25, 34]. Given their effectiveness, these models are highly
attractive for practical use, and different efforts are underway to
integrate them into operational weather forecasting [17, 26].

GenCast[34] is currently the leading MLWP system, achieving
the best performance [35] in day-to-day forecasting as well as
extreme event prediction. It employs an autoregressive diffusion
model to generate sequential predictions of future weather states.
At its core is a denoising model𝑑 , which iteratively predicts the next
state by denoising an initial estimate conditioned on the current
and previous states of the global grid. This process is guided by the
noise level of the initial estimate, which is gradually reduced over
the denoising steps until the final prediction is obtained.

More formally, given the states X𝑡−1 and X𝑡 , the model 𝑑 gener-
ates the next predicted state X̃𝑡+1 = Z𝑡+1𝑛 by performing𝑛 denoising
steps. To this end, it begins with an initial sample Z𝑡+10 ∼ X(𝜎1)
drawn from a noise distributionX, parameterized by an initial noise
level 𝜎1. Subsequently, each denoising step reduces the noise level
from 𝜎𝑖 to 𝜎𝑖+1 according to the update rule,

Z𝑡+1𝑖+1 = 𝑑 (X𝑡−1,X𝑡 ,Z𝑡+1𝑖 , 𝜎𝑖 , 𝜎𝑖+1).

where 𝑑 takes the past two states X𝑡−1 and X𝑡 , the current estimate
Z𝑡+1
𝑖

as well as the respective noise levels 𝜎𝑖 and 𝜎𝑖+1 as input.
This iterative and autoregressive refinement gradually enhances
prediction detail by reducing noise at each step.
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Figure 1: Location of satellite observations (blue ) and grid
points (gray ) for a single prediction step. The satellite paths
used for reconstructing the observation locations are computed
based on the orbital elements ofMETOP-B,METOP-C andNOAA 15
as measured by NORAD [22].

Training this model, however, poses a significant challenge: Back-
propagating through all 𝑛 denoising steps is computationally pro-
hibitive. As a remedy, the model is instead trained on individual
denoising steps using:

X̃𝑡+1 = 𝑑 (X𝑡−1,X𝑡 ,Z, 𝜎, 0) Z ∼ X(𝜎), 𝜎 ∼ Σ(0, 1) ,

where Σ(𝑎, 𝑏) is a probability distribution whose quantiles align
with the noise levels 𝜎1, . . . , 𝜎𝑛 , spanning steps 𝑎 ·𝑛 to 𝑏 ·𝑛. During
training, the full noise schedule with parameters 𝑎 = 0 and 𝑏 = 1
is used, thereby approximating the model’s behavior across all 𝑛
diffusion steps.

Due to the random initialization of noise samples in each step,
the prediction process is inherently stochastic. In the context of
weather forecasting, this randomness is not necessarily a limitation.
GenCast harnesses this stochasticity by generating multiple predic-
tions, forming an ensemble that captures a range of plausible future
scenarios. This ensemble-based approach enables uncertainty quan-
tification and significantly enhances the so-called forecast skill—the
ability to make accurate predictions of the global weather state [34].
Interestingly, this randomness makes constructing effective pertur-
bations more difficult than in deterministic models.

2.2 Data Assimilation
Our discussion of weather forecasting still misses a key aspect:
Real-world observations, such as temperature, pressure, and hu-
midity, rarely align exactly with the points of a global grid. Instead,
data from sources nearby the grid points must be integrated to
form a consistent representation of the current weather state. This
process, known as data assimilation in meteorology, is essential for
producing accurate forecasts.

Data assimilation draws on a wide range of sources, from sta-
tionary observation points such as land stations and sea buoys
to mobile platforms including balloons, aircraft, ships, and satel-
lites [16]. While all sources are used, satellites contribute by far the
largest share, providing nearly 90% of all assimilated data [15]. This
dominance stems from the capability of satellites in polar orbit to
scan the entire Earth’s surface approximately every 12 hours [9]
and geostationary satellites providing a near realtime view of a
large area.

The meteorological satellites operated by several international
consortia contribute to global data assimilation, such as China’s
CMA and NRSCC with 3 satellites, the US NOAA, NASA and US
Navy with 49 satellites, and Europe’s EUMETSAT and ESA with 14
satellites. As an example, Figure 1 shows measurements of three
satellites within one prediction period and the respective grid points
of the weather state.

Technically, data assimilation involves making an initial estimate
of the current atmospheric state at a grid point, then refining it
through iterative optimization [27]. This process is driven by an
objective that balances two main sources of error:

• Observation error. This error quantifies how closely the es-
timated state matches actual observations. For instance, if
the observed surface temperature is 20 °C but a nearby grid
point predicts 0 °C, the large discrepancy results in a high
observation error.
• Background error. This error captures the deviation between
the estimated state and a short-term forecast based on pre-
viously assimilated states. The short-term forecast incorpo-
rates past observational data, thus propagating historical
information into the current estimate.

The assimilated state combines current observations with short-
range forecasts derived from previous states, each of which carries
inherent uncertainty. To account for this uncertainty, it is explic-
itly modeled within the data assimilation process. This typically
involves estimating the noise through the variances of observa-
tion and background errors, which are then used to regularize the
assimilation procedure [16]. In contrast to the randomness in the
GenCast model, this noise plays into the attacker’s hand, as it allows
manipulations to be concealed within the expected uncertainty of
the assimilated data as we show in the following.

3 Adversarial Observations
Thus far, we have outlined how weather forecasting relies on ob-
servational data from numerous sources and is subject to inherent
uncertainty in both data assimilation and inference. Building on this
foundation, we now introduce our attack, which aims to manipulate
forecasts by injecting adversarial observations. Before presenting
the attack, we first describe the underlying threat model.

3.1 Threat Model
We characterize the threat of adversarial observations in terms of
the attacker’s goal, capabilities, and constraints.

Attacker’s goal. We consider a scenario in which an attacker
aims to manipulate forecasts generated by autoregressive diffusion
models, such as those used in GenCast [34]. Potential attack goals
range from causing economic harm by altering regional wind pre-
dictions, to inciting social disruption through fabricated extreme
weather forecasts, and ultimately to causing physical harm by con-
cealing impending disasters and preventing timely preparation. In
this scenario, the attacker always targets a particular region instead
of simply causing the general loss of predictive capabilities.
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Attacker’s capabilities. We assume that the adversary is capable
of slightly manipulating the inputs to the forecasting model, specif-
ically, the grid X assimilated from data of different meteorological
sources (see Section 2). While such manipulations could, in princi-
ple, be introduced at any source, we focus on measurements from
polar-orbiting satellites due to their predominance in the assimila-
tion process—contributing over 90% [15]—and their ability to cover
the entire Earth’s surface within 12 hours.

Weather satellites are managed by meteorological and space
agencies worldwide, including those operated by the USA, China, In-
dia, Germany, the European Union, Japan, France, and Taiwan [14].
An attacker could compromise satellite data through various means,
including internal sabotage, tamperingwith transmissions, breaches
at ground-based command centers, or by exploiting vulnerabilities
within the satellite systems [33, 43]. Even more concerning, ma-
nipulations could also be deliberately introduced by an operator
as part of a strategic attack against another country. Moreover, we
assume that the adversary has white-box access to the forecasting
model, including full knowledge of its architecture and parameters.
In contrast to other domains, this assumption is plausible, as state-
of-the-art learning models for weather forecasting are generally
open-sourced [e.g., 1, 25, 26, 34], as no significant security concerns
have been raised so far.

Attacker’s constraints. We assume that any manipulation of the
forecasting model’s input is subject to practical constraints. For
instance, control over a single satellite does not permit arbitrary
modifications, as its observations are assimilated alongside data
from numerous other sources. As a result, we assume that the adver-
sary can modify only a small fraction of the values at each node in
the weather state. Note that polar-orbiting satellites pass over each
grid point approximately twice per day, so global perturbations are
surprisingly not a limiting factor in our attack. In addition, manip-
ulations are constrained by mechanisms designed to detect errors.
Since weather forecasting is inherently imprecise, several such
mechanisms are employed to reduce errors in the model’s input as
early as possible. Consequently, manipulations are only effective if
the introduced perturbations remain within the expected variance
of the input variables. In this context, adversaries can exploit the
noisy nature of weather measurements but cannot introduce larger
deviations without risking detection.

To model these constraints, we assume that the adversary can in-
troduce noise with a small standard deviation, denoted by 𝜖 , where
𝜖 is smaller than the expected variance of any variable at the ma-
nipulated grid points. Furthermore, we conservatively assume that
the perturbation must be unbiased, as the adversary can influence
only a limited portion of the collected observational data.

3.2 Attack Methodology
Building on our threat model, we now present our attack strategy
for generating adversarial observations. The core idea is to manipu-
late the estimated state X̃𝑡 at time 𝑡 so that the predicted state X̃𝑡+𝑗

at a later time 𝑡 + 𝑗 aligns with a predefined target. To achieve this,
the attacker adds perturbations 𝜹𝑡 and 𝜹𝑡−1 to the weather states
X𝑡 and X𝑡−1, respectively, thereby influencing the prediction of
X̃𝑡+𝑗 in the subsequent autoregressive iterations.

While X𝑡 and X𝑡−1 are unknown at attack time, the attacker can
base their perturbation on the predicted states obtained using X𝑡−2

and X𝑡−3. More importantly, the resulting perturbations are con-
strained to be unbiased and limited in their variance, with standard
deviations not exceeding a threshold 𝜖 .

Objective function. Formally, the objective can be defined through
an adversarial loss functionA, which measures the distance from a
selected target and is minimized by the attacker using the (approxi-
mated) inference function 𝑓 of the MLWP system. In the case of
GenCast, this function encapsulates the entire prediction procedure
across multiple noise levels and time steps.

To model the constrained perturbations, we define a per-variable
mean 𝜇𝑣 and standard deviation 𝜎𝑣 for each variable 𝑣 ∈ 𝑉 , which
the perturbations must satisfy. These parameters allow us to con-
strain both the direction and the variability of the adversarial influ-
ence. Combining these elements, we arrive at the following opti-
mization problem, where 𝑗 is the lead time for the forecast and 𝑛
the number of considered noise levels used within 𝑓 :

arg min
𝜹𝑡 ,𝜹𝑡−1

A
(
𝑓 (X𝑡 + 𝜹𝑡 ,X𝑡−1 + 𝜹𝑡−1, 𝑗, 𝑛)

)
subject to ∀𝑣 ∈ 𝑉 : 𝜇𝑣 = 0 ∧ 𝜎𝑣 ≤ 𝜖.

Decomposing the adversarial loss. The function A captures the
complex task of manipulating forecasts in a single expression, ren-
dering direct optimization challenging. To address this, we decom-
pose A into two modular components, A = V ◦ S. The spatial
function S specifies the geographic region of interest, while the
variable function V extracts the relevant meteorological target
within that region. This structured formulation provides a flexi-
ble and unified optimization framework, capable of representing a
wide range of targets—from fabricating extreme winds to conceal-
ing genuine rainfall anywhere on the globe. To illustrate the utility
of this decomposition, let us consider the following definition of
the adversarial loss A:

S : X ↦→
{
X(lat,lon) | lat ∈ [51, 52], lon ∈ [−1, 1]

}
,

V : 𝑅 ↦→ −min
𝑟 ∈𝑅

(√︁
(𝑟u-wind)2 + (𝑟v-wind)2

)
.

In this example, the spatial function S selects all grid points with
latitudes between 51◦ and 52◦ and longitudes between −1◦ and 1◦,
corresponding to the London area. The variable functionV then
computes a scalar value from this region—specifically, negative
minimumwind speed, derived from the eastward (U) and northward
(V) wind components. As a result, the formulated loss function seeks
to maximize the minimum predicted wind speed around London.
More complex objectives can similarly be defined by customizing
the spatial and variable functions.

Approximating the inference function. The diffusion model un-
derlying 𝑓 is inherently non-deterministic, as it generates forecasts
by iteratively denoising samples initialized with random noise. In
the case of GenCast, this process unfolds over 40 steps, making
end-to-end differentiation computationally prohibitive. To mitigate
this, we could adopt an approximation strategy proposed by Liang
et al. [28], in which a single noise level is selected and the sample
is denoised from that point onward.
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However, this approximation alone does not fully resolve the
challenge of determining effective perturbations for 𝑓 . First, the
stochastic nature of the diffusion process means that the impact of
a perturbation heavily depends on the specific realization of the
initial noise. Second, the influence of the denoising step varies with
the selected noise level: lower noise levels result in only minor
forecast changes, while higher noise levels permit more substantial
alterations. As a result, the optimization process becomes highly
variable, and sampling only a single the noise level ddoes not yield
reliable perturbations for executing an attack.

Sampling multiple noise levels. To improve the approximation
of the inference process, we introduce two key refinements, as
outlined in Algorithm 1. First, rather than selecting a single noise
level, we sample 𝑛 > 1 distinct levels drawn from non-overlapping
intervals across the noise distribution. Second, instead of denoising
in a single step, we perform a sequence of denoising operations:
the process begins with noise sampled at the first level, followed by
iterative denoising through the subsequent levels, and concludes
with a final denoising step from the last level to zero.

Algorithm 1: Our approximation of the autoregressive
diffusion inference process.
Input: inputs X𝑡 ,X𝑡−1, lead time steps 𝑗 , number of steps 𝑛
Output: approximate prediction X̃𝑡+𝑗

1 Z𝑡𝑛,Z𝑡−1
𝑛 ← X𝑡 ,X𝑡−1;

2 for 𝜏 ← 𝑡 + 1 to 𝑡 + 𝑗 do
3 Sample 𝜎0, . . . , 𝜎𝑛−1 ∼ Σ

(
0, 1

𝑛

)
, . . . , Σ

(
𝑛−1
𝑛 , 1

)
;

4 Sample Z𝜏0 ∼ X(𝜎0);
5 for 𝑖 ← 1 to 𝑛 − 1 do
6 Z𝜏

𝑖
← 𝑑 (Z𝜏−2

𝑛 ,Z𝜏−1
𝑛 ,Z𝜏

𝑖−1, 𝜎𝑖−1, 𝜎𝑖 );
7 Z𝜏𝑛 ← 𝑑 (Z𝜏−2

𝑛 ,Z𝜏−1
𝑛 ,Z𝜏

𝑛−1, 𝜎𝑛−1, 0);

8 return Z𝑡+𝑗𝑛 ;

This strategy ensures that each optimization step incorporates
both high and low noise levels, striking a balance between influ-
ence and difficulty. In doing so, our refined approximation more
closely mimics the full inference procedure. In particular, lines 3–
4 of Algorithm 1 sample from the aligned distribution Σ and the
noise distribution X to generate an initial estimate. Subsequently,
lines 5–7 iteratively refine this estimate by applying the denoising
function 𝑑 across a sequence of decreasing noise levels 𝜎𝑖 .

Projecting the perturbations. Finally, to ensure that the perturba-
tions remain within the prescribed bounds, we introduce a projec-
tion operator Π, defined as

Π𝜖 (𝜹) = (𝜹 − 𝜇𝑣) ·
min(𝜖, 𝜎𝑣)

𝜎𝑣
.

This operator is applied to the perturbation 𝜹 of each variable 𝑣
across all grid points. We denote this as Π𝜖 (𝜹), indicating that
the projection is performed independently for each variable. The
projection ensures that the perturbations conform to the specified
per-variable constraints, maintaining the prescribed zero mean and
standard deviation 𝜖 .

Complete attack algorithm. The complete attack procedure, in-
tegrating all components and refinements, is presented in Algo-
rithm 2. The method follows a standard gradient-based framework
for generating adversarial inputs over 𝑁 iterations, leveraging the
approximated inference function (line 4) and applying the projec-
tion operator Π to enforce perturbation constraints (lines 6 and
9). To improve optimization efficiency, we incorporate momentum
(line 6) and use a cosine annealing schedule (line 7) to dynamically
adjust the step size throughout the process.

Algorithm 2: Our attack algorithm with 𝑛 approximation
steps of the diffusion process.
Input: inputs X𝑡 ,X𝑡−1, attack budget 𝜖 , steps 𝑁 , lead time 𝑗

Output: adversarial perturbation 𝜹𝑡 , 𝜹𝑡−1

1 m0 ← 0;
2 𝜹0 = (𝜹𝑡0, 𝜹

𝑡−1
0 ) ← 0;

3 for 𝑖 ← 1 to 𝑁 do
4 X̃𝑡+𝑗 = 𝑓 (X𝑡 + 𝜹𝑡𝑖−1,X

𝑡−1 + 𝜹𝑡−1
𝑖−1 , 𝑗, 𝑛);

5 g𝑖 ← ∇𝜹𝑖−1A(X̃𝑡+𝑗 );
6 m𝑖 ← 𝛽 ·m𝑖−1 + (1 − 𝛽) · Π1 (g𝑖 );
7 𝛼 ′

𝑖
← 𝜖

𝑁
+ 1

2
(
2𝜖 − 𝜖

𝑁

)
·
(
1 + cos

(
(𝑖−1) ·𝜋

𝑁

))
;

8 𝛼𝑖 ←
𝛼 ′𝑖
(1−𝛽 )𝑖 ;

9 𝜹𝑖 ← Π𝜖 (𝜹𝑖−1 − 𝛼𝑖m𝑖 );
10 return 𝜹𝑡

𝑁
, 𝜹𝑡−1

𝑁

4 Evaluation
We proceed to evaluate the effectiveness of the proposed attack in
generating adversarial observations under real-world conditions. To
this end, we consider two scenarios: (a) fabricating extreme events
and (b) concealing extreme events. That is, we first investigate
whether adversarial observations can reliably induce non-existent
extreme events across various locations and points in time. Second,
we examine whether the accuracy of forecasts for genuine extreme
events can be compromised, for example, by moving their location
or diminishing their intensity.

4.1 Experimental Setup
For all our experiments, we target GenCast [34], the currently lead-
ing MLWP system [35]. Specifically, we use the median prediction
deviation from a GenCast ensemble consisting of five members and
consider a one-degree grid resolution. For our attack, we generate
adversarial observations two days prior to a target prediction time
with 𝑗 = 4, resulting in an attack time offset of two days. We use
𝑁 = 50 iterative optimization steps to ensure that the resulting de-
viation remains robust to the stochasticity of the inference process.
Additionally, we set the number of approximation steps to 𝑛 = 2.
All experiments were run on a server with four NVIDIA A40 GPUs.

Dataset. Weperform all experiments using the ERA5 dataset [19],
which provides hourly assimilated weather variables of the entire
globe across multiple pressure levels and GenCast was trained on.
For a single state X this amounts to approximately >5M individual
variable values across 65,160 grid points.
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Figure 2: Resulting mean deviation induced by adversarial observations of different sizes. The average deviation of wind speed,
temperature and precipitation as well as the 90% confidence interval across all target locations and times are shown. The attacker goal is to
achieve the threshold for 99% extreme weather deviations with minimal noise increase.

We evaluate on data from 2022, which is the most recent full
year that is publicly available as part of WeatherBench2 [35], the
most common benchmark for MLWP systems.

Extreme weather. Following common practice in meteorology,
we define extreme weather events based on the deviation of a target
variable from its expected value. Specifically, we consider events
exceeding the 99th percentile for three variables: (a) wind speed at
10 meters above ground, (b) temperature at 2 meters above ground,
and (c) precipitation accumulated over a 12-hour period. That is,
we focus on wind speed, temperature, and precipitation values in
the top 1 % of measurements at each location.

To determine the 99th percentile threshold for each variable, we
analyze all historical weather states available in the ERA5 dataset,
evaluating each target variable individually. We construct a clima-
tological model for each variable, estimating the expected value for
any given day of the year at a specific location by averaging across
all available years. Using this model, we compute the maximum
deviation between the expected and actual values of the variable for
each year and location. We then derive the 99th percentile of these
yearly maxima and average them across all grid points to obtain
thresholds corresponding to the 99% extreme weather deviations.

Attacker setup. For our attack, we assume an adversary capable of
manipulating data from a single polar-orbiting satellite. Under this
scenario, we derive the maximum permissible standard deviation 𝜖
(see Section 3.1). Since the individual contribution of a single satel-
lite cannot be precisely determined, we conservatively approximate
its influence by assuming it is smaller than average: Approximately
100 meteorological satellites contribute to the ECMWF assimila-
tion system [14], so that, on average, a single satellite accounts
for roughly 1% of the total observation error. Since this error is
typically larger than background error, we can set a lower bound on
it using the background error [3]. Specifically, we limit the increase
in noise to just 0.25 % of the standard deviation of the background
error.

To map this relative constraint to absolute terms, we estimate the
variance of the background error per year. As previously described,
the background error is defined as the difference between the short-
range forecast from the previous state and the final assimilated state.
We use GenCast to perform a single-step forecast for each of our
evaluation years and compute the difference to the corresponding
assimilated values. Finally, we calculate the average variance across
all grid points and forecasts for each variable. The resulting attack
setup is conservative and clearly underestimates the potential real-
world impact of compromising a single satellite.

4.2 Fabricating Extreme Events
We begin by investigating whether adversarial observations can
trigger extreme weather predictions across different locations and
times. To select target locations, we focus on densely populated ar-
eas. Specifically, we randomly sample 100 sites from the 1,000 most
populous population centers using the Global Human Settlement
Urban Centre Database R2024A [30], which provides up-to-date es-
timates of global population distribution based on satellite imagery
analysis. The selected locations range from mid-sized cities such as
Suez and Leipzig to major metropolitan areas like Los Angeles and
Ho Chi Minh City. For each site, we randomly select a target time
within the evaluation year 2022.

For each of these location–time pairs, we run our attack to induce
extreme deviations in each of the three target weather variables at
the specified location and time, manipulating the observations two
days earlier ( 𝑗 = 4). To evaluate the impact of perturbation strength,
we conduct the attack using logarithmically spaced noise budgets,
starting from 0.02 % and increasing up to the derived maximum of
0.25 %, as discussed in Section 4.1.

Attack performance. Figure 2 displays the resulting deviations
across all target variables. We observe that adversarial observations
consistently induce substantial changes in weather predictions. For
each of the three target variables, the noise required to fabricate ex-
treme weather remains below the maximum allowed perturbation.
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On average, triggering extreme weather conditions for tempera-
ture and wind speed requires a noise level of approximately 0.08 %,
while precipitation proves even more sensitive, with the thresh-
old for extreme weather surpassed at noise levels below 0.05 %.
To put these numbers into perspective, at the maximum permit-
ted noise level of 0.25 %, the attack can increase wind speeds by
30.7m/s—equivalent to 111 km/h—averaged over a 12-hour period.
This average is on par with peak wind speeds typically observed
during a Category 1 hurricane. Similarly, temperatures can be in-
creased by 24.6 C, while precipitation can be increased by 221mm
over a 12-hour period—equivalent to 221 l/m2. This level of rainfall
is comparable to that seen during extreme storm events. These
results demonstrate that even minimal perturbations to observa-
tions can lead to substantial shifts in forecast outputs, highlighting
the vulnerability of state-of-the-art weather prediction systems to
adversarial manipulation.

Baselines. Next, we consider the performance of our attack against
two recently proposed methods targeting diffusion models. The
first, AdvDM [28], introduces perturbations directly into the noise
used by image diffusion models. The second, DP-Attacker [8], is
a more recent method designed to target policy diffusion models.
These models generate multi-step policies autoregressively from
an initial vision input, which is more similar to weather prediction
and makes this attack naturally suited to our context. Both baseline
attacks operate using a single sampled noise level for prediction,
consistent with the noise sampling employed during training.

The results are included in Figure 2. Our attack consistently
outperforms the baseline methods across all target variables and
attack budgets. Notably, both baselines fail to reach the extreme
weather thresholds for wind speed and precipitation. Only DP-
Attacker achieves the temperature threshold with an attack budget
below the maximum noise increase of 0.25 %. When comparing
the baselines with our method, we observe that the performance
gap widens as the attack budget increases. This suggests that our
approach scales more efficiently as the budget grows. This advan-
tage is particularly evident in the case of precipitation, where our
method surpasses the baselines by a substantially larger margin.
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Figure 3: Mean required noise increase at different locations.
The dashed line shows a linear regression of the required noise. The
mean increase in noise required to fabricate an extreme weather
prediction grows with increasing distance from the equator.

Table 1: Mean relative deviation achieved by different abla-
tions. The deviation is relative to the original attack and averaged
across 200 different target combinations.

Method Wind Speed Temperature Precipitation

Ours 100.0 % 100.0 % 100.0 %
w/o steps 89.3 % (-10.7) 93.1 % (- 6.9) 54.4 % (−45.6)
w/o approx 59.3 % (-40.7) 71.6 % (-28.4) 33.9 % (−66.1)
w/o both 56.0 % (-44.0) 62.9 % (-37.1) 18.4 % (−81.6)

Susceptibility of different locations. To explore how the choice
of target location influences the attack, we investigate whether
predictions at certain locations are more susceptible to adversarial
observations than others. This is evaluated by calculating the av-
erage increase in noise required at each target location to achieve
extreme weather, averaged over all target variables.

Our findings, illustrated in Figure 3, indicate a relationship be-
tween the required noise and the angular distance from the equator.
Specifically, locations farther from the equator tend to require more
noise to achieve the same level of deviation (𝑝 < 0.05). Still, even the
most impacted areas require less than the maximum noise increase
to trigger extreme weather predictions—indicating that, although
the effect is statistically significant, its practical impact is modest.
We hypothesize that this trend is linked to the uneven distribution
of grid points near the equator. Because the grid is constructed with
uniform spacing in both latitude and longitude, grid points become
increasingly dense toward the poles and sparser near the equator.
One potential solution to address this imbalance is to use a mesh
derived from an icosahedron, which ensures uniform spacing be-
tween grid points regardless of geographic location. This approach
aligns well with existing infrastructure, as GenCast already em-
ploys a six-times refined icosahedral grid internally. However, this
adjustment alone does not resolve the underlying vulnerability.

Ablation study. To better understand the contribution of indi-
vidual components within our attack methodology, we perform an
ablation study. Specifically, we evaluate three simplified variants: (1)
replacing our improved approximation of the inference process with
the naïve approach used during training, (2) removing optimization
enhancements such as cosine annealing and momentum, and (3)
removing both simultaneously. Due to computational constraints,
we restrict our evaluation to a subset of 200 out of the original 1,500
target combinations. For each variant, we compute the prediction
deviation relative to the full attack, quantifying the extent to which
each component contributes to overall effectiveness.

The results in Table 1 show removing any single component
leads to a noticeable drop in performance. For temperature and
wind speed, most of the performance is retained without the opti-
mization improvements. This suggests that the inference approx-
imation plays a more critical role for these variables. Moreover,
removing the inference approximation alone has a larger impact
than removing the improved steps. As expected, disabling both
components results in the largest performance reduction. These
findings suggest that the interplay between the inference approxi-
mation and the optimization enhancements is essential to achieving
the strong attack effectiveness observed in our earlier experiments.
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Figure 4: Predicted precipitation at the peak of Cyclone Am-
phan. The forecast is shown (a) without attack and (b) after in-
cluding adversarial observations. The dashed rectangle depicts the
target region of the attack. The precipitation is expressed as mm
over a 12-hour period.

4.3 Concealing Extreme Predictions
Thus far, our analysis has focused on scenarios in which an adver-
sary seeks to fabricate predictions of extreme weather at specific
times and locations. We now turn to a different question: can the at-
tack also undermine genuine forecasts of extreme weather events?
To explore this, we apply our method to three major historical
events—Cyclone Amphan (2020), the 2006 European heat wave, and
Hurricane Katrina (2005). For each event, we simulate an attack by
introducing a maximum noise perturbation of 𝜖 ≤ 0.25 % into the
weather state two and a half days before the event reaches peak
intensity. This time frame ensures that the extent and location of
the extreme event are correctly predicted without the attack but
also allows for realistic manipulation. Differing from the previous
section, the attacker’s goal is not to increase the intensity at a single
grid point but instead to reduce it in a region.

Cyclone Amphan. Our first case study focuses on tropical Cy-
clone Amphan, which struck Bangladesh, India, and Sri Lanka in
May 2020, bringing strong winds and heavy rainfall that caused
widespread flooding [23]. Several days prior to landfall, the storm
significantly intensified—whichwas correctly predicted byGenCast—
leading up to intense precipitation across the region as shown in
Figure 4a as the blue shaded area.

We adversarially perturb the observations before this intensifi-
cation, targeting a prediction outcome with minimal precipitation
across the expected storm region. As shown in Figure 4b, the result-
ing forecast entirely suppresses precipitation in the target region.
Notably, when examining the sequence of predicted states between
the perturbed inputs and the forecast, we observe a plausible dissi-
pation of the storm. In this manipulated scenario, the storm releases
rainfall over the ocean and weakens before reaching land. This il-
lustrates how an attacker could convincingly mask an otherwise
accurate forecast of a severe weather event. Crucially, the pertur-
bations as well as the intermediate weather development appear
plausible despite the underlying manipulation.

European Heat Wave. To assess the ability of our attack to con-
ceal extreme temperatures, we apply it to the European Heat Wave
of 2006, which set temperature records across a multitude of West-
ern European countries [36]. Figure 5 presents the temperature
forecasts before and after the introduction of adversarial observa-
tions. As in the previous case study, the extreme weather signal is
effectively suppressed in the targeted region following the attack.

For this specific attack, we include only the eastern portion of
the heat wave as the target region (indicated by the rectangle in
Figure 5). Despite this narrow focus, extreme temperatures are also
eliminated from adjacent areas. This highlights another key insight:
the impact of adversarial observations extends beyond the targeted
geographic region, plausibly removing the entire extreme weather
event rather than confining the effect locally. Furthermore, we ob-
serve that the altered forecast significantly overshoots the intended
objective of merely hiding the heat wave. Instead, unnaturally mild
temperatures ranging from 5°C to 10°C in the regions surrounding
the North Sea are predicted. This effect could be mitigated by spec-
ifying a desired target temperature, instead of naïvely minimizing
the predicted temperature.

5°C 15°C 25°C 35°C

(a) Original prediction

(b) Perturbed prediction

Figure 5: Predicted temperature at the peak of the European
Heat Wave 2006. The forecast is shown (a) without attack and
(b) after including adversarial observations. The dashed rectangle
depicts the target region of the attack.
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Figure 6: Predicted storm path of Hurricane Katrina. The fore-
cast is shown (a) without attack and (b) after including adversarial
observations. The triangles show the target location at which the
wind speed is minimized ( ) and maximized ( ).

Hurricane Katrina. Our final case study evaluates the precision
with which an adversary manipulate the course of a storm, using
Hurricane Katrina as an example. After initially passing Florida, the
storm made its primary landfall near New Orleans [42]. Rather than
suppressing the storm entirely, an adversary may aim to shift the
predicted landfall site to disrupt relevant preparations. To simulate
this, we compute adversarial observations that reduce the predicted
wind speed at the original landfall site while simultaneously in-
creasing it at a new, perturbed location.

The original and perturbed storm tracks are shown in Figure 6.
After introducing the perturbation, the forecast storm path clearly
deviates from the original, no longer indicating landfall near New
Orleans but instead pointing to the manipulated location. The
storms trajectory is determined using the location of lowest sea
level pressure, which serves as a proxy for the storms eye. Notably,
although the optimization process targets wind speed predictions,
it also affects atmospheric pressure, again suggesting broader im-
plications of adversarial interference.

5 Statistical Detection
Our findings demonstrate that AI-based weather forecasting sys-
tems are vulnerable to adversarial observations, underscoring the
need for effective defense mechanisms. In the following, we thus
explore statistical detection as a potential countermeasure to miti-
gate this vulnerability, while broader organizational responses are
discussed in Section 6.

Noisy data is not unique to the adversarial context and in fact a
common and practical challenge for real-world forecasting systems.
To manage this, quality control procedures are implemented that
evaluate the reliability and plausibility of incoming data. These
procedures typically consist of hand-crafted rules involving two
main categories: whether the observations are temporally and spa-
tially consistent, and whether they fall within a reasonable range
of the best estimate of the value [12, 41]. Because these checks are
designed to handle naturally occurring noise and errors, they are
insufficient for detecting the subtle, worst-case perturbations intro-
duced by adversarial observations. We therefore explore whether
more sophisticated statistical tests could identify manipulations
and serve as a defense against this threat.

We evaluate detecting adversarial observations in the context
of a statistical difference to real data. The assimilated state X̄ is
commonly assumed to consist of an unknown underlying ground-
truth value X, to which unbiased Gaussian noise is added by the
background and observation error [3]. We assume a best-case sce-
nario for the defender in which all natural noise can be described
by the background error alone. In this setting, the attacker adds
noise through the adversarial observations and we arrive at

X̄ = X + N(0, 𝜎2
𝑏
) + N (0, 𝜖2) = X + N

(
0, 𝜎2

𝑏
+ 𝜖2

)
,

where 𝜎2
𝑏
denotes the variance of the background error.

Under this formulation, any adversarial perturbation increases
the total noise in the assimilated state. Thus, if the background
error variance is both constant and known exactly, the presence
of an attack can, in principle, always be detected—provided the
sample size is sufficiently large—since the resulting variance will
exhibit a measurable increase. In practice, however, the sample size
is constrained by the number of grid points and the number of
variables per grid point, making detection inherently probabilistic.
Moreover, the variances of background and observation errors are
neither constant nor known with high precision, which makes
detecting small increases in noise particularly challenging.

Despite these limitations, we take a conservative approach to
evaluate the overall detectability of the attack, assuming a best-case
scenario for the defender in which the total error variance in the
assimilated state is constant and known. Under this assumption, we
can determine whether a given sample shows a significantly higher
variance by applying a simple chi-square test for the variance [31].

Chi-square test setup. We consider the targets described in Sec-
tion 4 and compute the minimum increase in noise required to
trigger an extreme weather deviation. This is estimated by linearly
interpolating the induced deviations across the evaluated noise
levels. To ensure that each attack can reach the extreme weather
threshold, we do not impose a limit on the maximum noise level.
In such cases, we extrapolate beyond the defined maximum attack
budget. For all attacks, we then estimate the detection probability
using a chi-square test for variance, assuming perfect knowledge
of the expected amount of noise.

Detection results. The detection probabilities are presented in Ta-
ble 2. Adversarial observations from both baselines are consistently
detected using the chi-square test, with rates exceeding 95 % in all
cases—except when temperature is manipulated by the DP-Attacker.
In contrast, our attack results in significantly lower detection prob-
abilities: approximately ≈ 3% for wind speed and temperature, and
just 0.2 % for precipitation.

These results demonstrate that, even under ideal conditions,
the attack would likely evade detection. This conclusion is further
reinforced by the fact that the assumed detection method is not
practically feasible and would likely result in false positives. Con-
sequently, even if such a method were implementable, successful
detection would remain unlikely and establishing definitive proof
of an attack even more so. We therefore conclude that statistical
detection is, unfortunately, not a viable approach for defending
against adversarial perturbations in weather forecasting.
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Table 2: Detectability of different approaches used to fabri-
cate extreme weather deviations. The detectability is measured
using a chi square test for the variance with best-case assumptions
of constant and perfectly known variance of the assimilation error.

Method Wind Speed Temperature Precipitation

AdvDM > 99.99 % 99.92 % > 99.99 %
DP-Attacker 95.04 % 45.85% 95.33 %
Ours 3.07 % 2.96 % 0.20 %

6 Discussion
Our findings highlight a critical vulnerability in modern weather
forecasting: the integration of machine learning into the prediction
pipeline introduces a new attack surface for manipulation. These
concerns align with prior research that has revealed fundamental
limitations in the robustness of machine learning systems [24, 29].
Even more concerning, as demonstrated in Section 5, such manipu-
lations are likely to remain undetected. While crafting adversarial
observations may exceed the capabilities of typical cybercriminals,
they represent a promising tool for more sophisticated and well-
resourced actors, including nation-state adversaries. In the follow-
ing, we thus take a broader perspective on the impact of our work,
beginning with a discussion of its limitations and assumptions,
followed by recommendations for mitigating this threat.

6.1 Limitations
We begin by outlining the key assumptions underlying our attack
and how they may limit its practical impact.

Access to prediction model. Our attack relies on computing gra-
dients of the model’s outputs, which requires access to the model
weights. Currently, this is a reasonable assumption, as many leading
forecasting models are publicly available [e.g., 1, 25, 26, 34]. How-
ever, it is possible that future models will not be publicly released,
which would significantly hinder an adversary’s ability to carry out
the attack. Black-box attacks on machine learning models typically
require vastly more queries to the target model [5], rendering such
approaches impractical for weather models. This difficulty is fur-
ther exacerbated by the operational nature of weather forecasting
systems, which generally produce predictions only once per time
step. For example, conducting 1,000 queries—on the very low end
of what is typical for black-box attacks—against a model with a
12-hour time step would require 500 days to complete.

To overcome this constraint, black-box methods would likely
need to identify a universal adversarial perturbation that remains
effective across multiple time steps. A more feasible alternative
arises if the attacker has regular access to the output forecasts of
the target system. In this case, a model extraction (or model stealing)
attack could be performed, allowing the adversary to reconstruct an
approximate surrogate of the target model over time. Adversarial
observations could then be crafted using this surrogate in a white-
box setting and transferred to the original system. However, model
extraction would be slow in this case, as the attacker cannot control
the inputs, and thus the process would again require a significant
amount of time.

Continuous attack. In this work, we focus to introduces perturba-
tions at a time step 𝑡 to manipulate the prediction at a future time
step 𝑡 + 𝑗 . In practice, however, weather forecasts are updated con-
tinuously and new predictions are typically made at each time step.
This would require the attack to sustain the manipulations until
reaching the forecast at 𝑡 + 𝑗 . This adds a layer of complexity to the
attack, as the adversary must persist with the attack long enough
for decisions to be influenced by the forecast. This persistence does
not have to be negative and could also work in the adversary’s favor.
Since data assimilation implicitly incorporates the entire history of
observations, it may be possible to exploit this process, potentially
making the attack more effective. Furthermore, if we extend our
view to earlier time steps, smaller adversarial perturbations could
be distributed over a longer period, potentially making the attack
more subtle and harder to detect.

Weather forecasting pipeline. We consider an attack on weather
prediction, which is a single step of the weather forecasting pipeline.
In particular, on the assimilated state on the grid, while an attacker
can only control the observations before data assimilation and with
the output of the weather prediction being the target without any
further statistical postprocessing. Although this might seem to con-
strain our attack to the realm of theoretical feature-space attacks,
we have ensured a practical scenario by considering the problem
space across all points. The influence of the attacker is realistic in
adding only noise and the derived constraint is both conservative
and faithful to real-world constraints. Furthermore, our statistical
detection is not only inspired by real-world quality control proce-
dures, but assumes a far stronger defender that still cannot reliably
detect our attack. Additionally, current developments indicate that
data assimilation will also be integrated to achieve end-to-end AI-
based weather forecasting in the near future [1, 21]. This would
enable directly computing gradients to the individual observations,
allowing attackers to perform the same attack directly on the prob-
lem space. Moreover, further statistical postprocessing is unlikely
to nullify the effects of our attack, because it would be based on
the compromised outputs of the weather prediction.

6.2 Countermeasures
Given the limitations of detecting adversarial observations, we con-
sider alternative defense strategies that extend beyond detection.

Hybrid methods. A straightforward approach to enhancing fore-
casting robustness is to cross-verify predictions using traditional
numerical weather prediction (NWP) systems whenever extreme
weather events are forecast. This strategy preserves the benefits
of shorter runtimes and improved accuracy offered by the MLWP
system, while potentially mitigating exposure to adversarial threats.

However, this approach is not sufficient. First, such selective
verification would fail to detect the second attack scenario, where
an adversary suppresses an impending extreme weather event from
the forecast since no secondary check would be triggered. Moreover,
even for the first attack scenario, a conflicting forecast from NWP
would not prove an attack or an error of MLWP, given that MLWP
has demonstrated the ability to predict extreme events earlier with
greater accuracy [34]. Consequently, operating hybrid MLWP and
NWP systems does not constitute an adequate countermeasure.
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Adversarial robustness. In other domains, adversarial training
has proven effective in improving the robustness of machine learn-
ing models [20, 29]. However, given the complexity and immense
computational resources required to train state-of-the-art forecast-
ing models, adversarial training is likely prohibitively expensive or
negatively impacts performance relative to traditional prediction
systems. We leave a deeper exploration of this approach to future
work within the meteorological community. As a more practical
remedy, we recommend that future MLWP development prioritize
not only forecast accuracy but also robustness, by systematically
evaluating models against attacks, such as ours. While this strategy
may not entirely eliminate the risk of adversarial observations, it
could raise the noise threshold required for a successful attack,
reducing its impact or making it more likely to be detected through
statistical testing.

Better detection. Even though we demonstrate that statistical
detection is unlikely even in the best case when modeling the back-
ground and observation errors as Gaussian noise, as is common in
meteorology, other models might allow better detection. For exam-
ple, detection of physical inconsistencies could indicate a pertur-
bation, as the attack does not currently incorporate strict physical
dependencies into the constraints. Of course, those constraints also
are not fully held for naturally occurring observations because of
measurement errors. Anomaly detection of more powerful statisti-
cal tests might provide further avenues for improved detection but
could also fall into the trap that extreme weather conditions are
anomalous by definition. Thus, detection methods always introduce
a trade off between better robustness against attacks and the chance
of false positives.

Trusted data sources. The existence of adversarial observations
highlights a fundamental dependency on the integrity of data
sources used in weather forecasting. In safety-critical contexts—
such as military or space operations—this dependency necessitates
the exclusive use of trusted and rigorously validated observational
inputs. Although this constraint may reduce forecast accuracy, it
significantly lowers the risk posed by adversarial data. However,
such measures cannot entirely eliminate the threat, as a determined
adversary may still succeed in compromising individual sources
without detection by any trusted entity.

7 Related Work
A substantial body of research has focused on generating adversarial
examples for machine learning classifiers [6, 10, 24, 29]. In contrast,
comparatively little attention has been devoted to attacks targeting
diffusion models or weather forecasting systems.

7.1 Attacks on Diffusion Models
Diffusionmodels were initially developed and explored in the image
domain, where they also faced the first wave of attacks. Initial efforts
focused on identifying perturbations that make images unlearnable,
aiming to safeguard intellectual property [38]. Subsequent work
explored how adversarial examples could be used to prevent imi-
tation or replication of specific artistic styles in generated images.
An example is AdvDM by Liang et al. [28] that we consider in our
evaluation.

The diffusion models targeted by these approaches, however,
differ significantly from those used in weather forecasting. In image
generation, the models typically denoise a target sample directly,
whereas in weather forecasting, they generate sequences of samples
autoregressively.

More recently, diffusion models have been extended to domains
such as robotic control, which more closely parallels weather fore-
casting due to its reliance on autoregressive sampling. Attacks in
this domain have emerged as well, crafting inputs that disrupt a
robot’s ability to complete its tasks. Despite domain-specific vari-
ations, the core attack strategies are largely consistent, generally
relying on single-step denoising to approximate the inference pro-
cess. We consider the approach DP-Attacker by Chen et al. [8]
in our evaluation. However, our findings reveal that such attacks
fail to produce adversarial observations with perturbations small
enough to be considered imperceptible or practically effective.

7.2 Attacks on Weather Forecasting
Attacks have also been explored in the context of weather forecast-
ing, specially for renewable energy planning [7, 18, 37, 39]. These
studies differ significantly from ours in terms of their threat model.
Specifically, they assume that the adversary has direct access to
manipulate either the outputs of the forecasting system or the his-
torical data of renewable energy generation. In contrast, we adopt
a more realistic and plausible threat model, where adversarial per-
turbations are introduced through corrupted observations by a
malicious actor. Moreover, prior works are limited in both scope
and objective, each focusing on a single forecasting goal within a
localized region. Our approach, by comparison, evaluates a broader
set of attacker goals spanning global locations.

8 Conclusion
AI-based weather forecasting has attracted increasing attention,
with leading meteorological institutions actively exploring the in-
tegration of such models into operational forecasting systems. Yet,
despite notable advances in model architecture and performance,
existing systems lack safeguards against adversarial manipulation
of input data. In this paper, we demonstrate that diffusion models—
such as those used in GenCast—are susceptible to precisely crafted
adversarial observations that can alter extreme weather forecasts
without significantly affecting the statistical properties of the input.
More broadly, we introduce a novel attack framework for generat-
ing adversarial examples targeting autoregressive diffusion models,
designed to operate under realistic constraints.

Responsible Disclosure
We have initiated a responsible disclosure process with the GenCast
development team. We hope to explore new countermeasures in
cooperation with the developers.
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