
Broken Promises: Measuring Confounding Effects in
Learning-based Vulnerability Discovery

Erik Imgrund

erik.imgrund@sap.com

SAP Security Research

Germany

Tom Ganz

tom.ganz@sap.com

SAP Security Research

Germany

Martin Härterich

martin.haerterich@sap.com

SAP Security Research

Germany

Lukas Pirch

lukas.pirch@tu-berlin.de

Technische Universität Berlin

Germany

Niklas Risse

niklas.risse@mpi-sp.org

Max-Planck Institute

Germany

Konrad Rieck

rieck@tu-berlin.de

Technische Universität Berlin

Germany

ABSTRACT
Several learning-based vulnerability detection methods have been

proposed to assist developers during the secure software devel-

opment life-cycle. In particular, recent learning-based large trans-

former networks have shown remarkably high performance in

various vulnerability detection and localization benchmarks. How-

ever, these models have also been shown to have difficulties accu-

rately locating the root cause of flaws and generalizing to out-of-

distribution samples. In this work, we investigate this problem and

identify spurious correlations as the main obstacle to transferability

and generalization, resulting in performance losses of up to 30%

for current models. We propose a method to measure the impact

of these spurious correlations on learning models and estimate

their true, unbiased performance. We present several strategies to

counteract the underlying confounding bias, but ultimately our

work highlights the limitations of evaluations in the laboratory for

complex learning tasks such as vulnerability discovery.

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Computing methodologies→Machine learning.

KEYWORDS
Vulnerability Discovery, Confounding Effect, Overfitting, Causal

Learning, Large Language Models

1 INTRODUCTION
The traditional approach to finding vulnerabilities in software relies

on manual code review and extensive testing. This approach is

time-consuming, resource-intensive, and prone to human error.

Static program analysis, on the other hand, supports developers

and security professionals in automatically identifying and locating

potentially flawed areas without actually running the program.

Unfortunately, such static application security testing (SAST) tools

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

AISec ’23, November 30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0260-0/23/11.

https://doi.org/10.1145/3605764.3623915

often report many false positive alerts, which consequently require

expensive manual triage as well.

As a remedy, methods for learning-based vulnerability detection

have been proposed to automatically derive rules from historical

data to increase the detection rate while at the same time pertaining

to a lower false-positive rate [31, 39]. These machine learning (ML)

models have been shown to outperform rule-based SAST tools un-

der laboratory settings [15, 65]. There is a vast number of learning-

based detection methods available differing mainly in their model

architecture, dataset, and the preprocessing techniques they use.

For instance, there exist sequence-based solutions from the NLP do-

main [31, 39], graph neural networks for code analysis [7, 9, 50, 65]

and more recently transformer-based models [8, 15, 46].

With large language models (LLMs) being on the rise, trans-

former networks have been trained on many code-centric tasks,

achieving remarkable results on, for instance, code clone detec-

tion [61], code completion [33], code generation [45] and code

summarization [51]. Naturally, this progress has also inspired LLM-

based approaches for vulnerability detection and localization. How-

ever, since training an LLM requires a vast amount of data and re-

sources, techniques categorized as one-shot and few-shot learning

have been adopted to fine-tune pre-trained models in this setting.

Novel advances like adapters [22] or low-rank adaption [23] yield

possibilities to optimize pre-trained LLMs for very specific learning

tasks. Similarly, it has been shown that the learned representa-

tion of pre-trained LLMs beneficially supports the performance on

fine-tuned downstream tasks [24].

As a consequence of this development, recent works present an

astonishing performance on the discovery and localization of de-

fects in source code using fine-tuned LLMs, beating prior learning-

based and rule-based methods by far and achieving more than 90%

balanced accuracy under in-lab conditions [15]. A further benefit of

these transformer networks is improved vulnerability localization

through the interpretation of token attention scores as a measure

of code importance [15, 40]. This success of transformer networks,

however, is overshadowed by a notable weakness: The models fail

to generalize to out-of-distribution samples [8]. That is, high perfor-

mance is only achievable if the training and test data come from the

same software project, which obviously undermines the practical

utility of learning-based vulnerability discovery.

In this work, we explore the reason for this deficit and show that

transformer networks suffer from spurious correlation, hindering

https://doi.org/10.1145/3605764.3623915

AISec ’23, November 30, 2023, Copenhagen, Denmark Erik Imgrund, Tom Ganz, Martin Härterich, Lukas Pirch, Niklas Risse, and Konrad Rieck

generalization and transferability. These correlations create a con-

founding bias in the learning models, which impacts the detection

as well as localization of vulnerabilities. The networks not only

fail to identify out-of-distribution data but also hint at irrelevant

code when explaining their decisions. To characterize this prob-

lem, we propose a methodology to measure the impact of spurious

correlations on learning-based vulnerability discovery using the

framework of causal inference. To this end, we correlate the loss

in performance with semantics-preserving transformations that

gradually change the appearance of the code. We find that even

minor tweaks in style, control flow, or variable naming are enough

to render transformer networks unusable.

We propose three techniques to counter the underlying con-

founding effects: First, we observe that graph neural networks

(GNNs) are less susceptible to artifacts in the dataset and hence

offer an alternative architecture for vulnerability discovery. Second,

we can mitigate some confounders by pre-tokenizing the input for

the LLMs, and finally, we propose to normalize code to a canoni-

cal representation before passing it to LLMs. The latter achieves

the best overall results. Although we cannot completely eliminate

spurious correlations, their impact can be reduced significantly,

enabling research to avoid confounding effects.

The rest of this paper is structured as follows: We begin with an

introduction to LLMs and graph representations for vulnerability

discovery in Section 2. Then, we detail our problem setting and

introduce ourmethodology in Section 3. In Section 4, we present our

empirical evaluation and discuss the results in Section 5, ending

with the related work section and conclusion in Section 6 and

Section 7, respectively.

2 VULNERABILITY DISCOVERY
Let us start by introducing the basic concepts of large language

models (LLMs) and graph neural networks (GNNs) for the task

of vulnerability discovery, before exploring their limitations and

confounding effects.

2.1 Vulnerability Discovery
A vulnerability detection method aims to derive a single score

indicating the vulnerability likelihood of a program based on a

particular representation of it. This is expressed in Definition 1,

which defines a decision function that takes a piece of code and

maps it to the probability of it being vulnerable.

Definition 1. A method for static vulnerability discovery is a de-
cision function 𝑓\ : 𝑥 ↦→ 𝑃 (vulnerable | 𝑥) that maps a code sample
𝑥 to its probability of being vulnerable [17].

Learning-based methods for vulnerability discovery utilize a

parameterized classification function 𝑓\ as depicted in Definition 1,

whose weights \ are optimized during training on a dataset of

vulnerable and non-vulnerable code samples [18]. We denote the

classes with prediction probabilities as Vulnerable and Clean,

where the former denotes a sample with a code bug present and

the latter denotes a sample without bugs.

2.2 Large Language Models
Prior works apply models borrowed from the natural language

processing domain to vulnerability discovery [31]. This includes

the interpretation of code as a natural sequence of tokens. Models

like recurrent neural networks (RNNs) or long short-term mem-

orys (LSTMs) are naturally suited for this task [31, 39, 65]. With

the rise of LLMs, which are in essence large transformer models,

such networks are increasingly used and fine-tuned for the task of

detecting and locating code defects.

Typically, a transformer model consists of either an encoder, a

decoder, or both [32]. Each part is composed of multiple blocks

consisting of bidirectional multi-head self-attention mechanisms

and feed-forward neural networks. Compared to RNNs, transformer

models are not limited by the Markov property, where the last

hidden state of an RNN needs to store the latent representation of

the entire program. Instead, attention matrices produce an attention

vector for each token denoting the influence of each other token

in the sequence [15]. Since the self-attention mechanism is the

heart of LLMs, we define it formally using the original notation

by Vaswani et al. [48]:

Attention(𝑄,𝐾,𝑉) = Softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

𝑉

)
(1)

The matrix 𝑄 ∈ R𝑑model×𝑑𝑘
denotes a query containing the set

of representations for the current tokens, which is then multiplied

with the key matrix 𝐾 ∈ R𝑑model×𝑑𝑘
. The result is scaled by the

inverse square root of the embedding size 𝑑𝑘 and finally, after a

softmax, used as an index to the value matrix 𝑉 ∈ R𝑑model×𝑑𝑣
yield-

ing the attention vector. 𝑑
model

denotes the size of the vocabulary

and the 𝑄 , 𝐾 and 𝑉 matrices can be split into multiple attention-

heads to capture richer semantics. Recent methods for vulnerability

discovery, such as LineVul [15], use pre-trained transformer net-

works, like CodeT5 [52], BERT [12] or RoBERTa [34], and fine-tune

them on vulnerable code.

2.3 Graph Neural Networks
Since programs can be modeled as directed graphs [1, 5, 58], a

different strain of research has explored graph representations for

source code instead of flat token sequences [9, 50, 65]. We refer to

the resulting program representation as a code graph and denote

the underlying directed graphs as 𝐺 = 𝐺 (𝑉 , 𝐸) with vertices 𝑉

and edges 𝐸 ⊆ 𝑉 × 𝑉 . Moreover, nodes and edges of the graphs

are attributed, that is, elements of 𝑉 or 𝐸 are assigned values in a

feature space that characterize local properties of the code.

Different code graphs capture different syntactic and semantic

features. A popular representation is the code property graph (CPG)

by Yamaguchi et al. [58], which is a combination of the abstract

syntax tree (AST), the control flow graph (CFG), and the program

dependence graph. Other approaches use different combinations,

for instance, combining the AST with the CFG and the data flow

graph (DFG) [6]. Using such representations, research has started

to focus on graph convolutional networks (GCNs) [65]. These net-

works are a class of deep learning models realizing a function

𝑓 : 𝐺 (𝑉 , 𝐸) ↦→ 𝑦 ∈ R𝑑 that can be used for the classification of

graph-structured data [40].

AISec ’23, November 30, 2023, Copenhagen, Denmark

GCNs can be viewed as a generalization of convolutional neural

networks (CNNs), just as an image can be viewed as a regular grid

graph where each pixel denotes a node in the graph connected by

edges to its neighboring pixels [57]. A graph convolutional net-

work needs two mandatory input parameters, that is, an initial

feature matrix 𝑋 ∈ R𝑁×𝐹 , with 𝑁 being the number of nodes in

the graph and 𝐹 the number of features per node, and the topol-

ogy commonly described by the adjacency matrix 𝐴 ∈ [0, 1]𝑁×𝑁 .

The most popular GCN types belong to so-called message passing

networks (MPNs) where the prediction function is computed by

iteratively aggregating and updating information from neighboring

nodes. One of the simplest MPNs is the one defined by Kipf and

Welling [26]:

ℎ (𝑙) = 𝜎 (𝐴ℎ (𝑙−1)𝑊 (𝑙−1)) (2)

withℎ0 = 𝑋 [26]. Here, the intermediate representations are linearly

projected and sum-wise aggregated according to the normalized

adjacency matrix 𝐴 with self-loops followed by a non-linear acti-

vation function. These GCNs can be stacked to learn filters w.r.t.

larger neighborhoods. Other GCN layers use different aggregation

and update mechanisms, for instance, instead of an multilayer per-

ceptron (MLP), gated graph neural networks (GGNNs) use gated

recurrent unit (GRU) cells to update the hidden state of nodes [29],

while graph attention network (GAT) layers use attention mecha-

nisms [49]. We refer the reader to the overview article by Wu et al.

[57] that discusses GNNs in detail.

Because of the fitting premise of GCNs, they have been widely

adopted for representation learning on code graphs. The graph-

based approaches in recent literature outperform classical SAST

tools and older sequential models, such as VulDeepecker [31] or

Draper [39]. Graph-based methods like Devign [65] and ReVeal [7]

are currently among the best learning-based approaches for vul-

nerability discovery, though with lower performance than recent

methods based on LLMs.

3 METHODOLOGY
Weproceed to outline the problem setting and introduce ourmethod-

ology for measuring the impact of spurious correlations.

3.1 Problem Setting
Currently, many popular learning-based vulnerability detectors

exist with varying efficiency. Furthermore, previous works have

shown, that although these approaches provide promising results,

their ability to precisely pin down the root cause of a bug is lacking.

It is questionable, how a security practitioner should respond when

a model classifies a function as vulnerable if the model is unable to

precisely locate the bug.

Some models come with an integrated explanation mechanism,

for instance, LLMs, while others can be enhanced using model-

agnostic explanation mechanisms [42], such as Class Activation

Maps (CAM) or SHAP [35]. These explanation methods provide a

more fine-grained view of the decision of the model and can be used

for line-level or even statement-level bug localization. However,

these methods provide vastly differing results [54, 66] and a fair

comparison is generally non-trivial [3, 16]. It has been shown that

vulnerability discovery models tend to focus on irrelevant artifacts

in the provided data [16] and that their measured performance may

be biased with respect to practice [3, 7].

A motivating example. Let us consider the example in Figure 1.

Here, LineVul [15] correctly identifies a bug in the given C function.

However, the model falsely claims that the root cause lies in line 2,

that is, the instantiation of a matrix on the stack. The actual cause

of the vulnerability, however, is a type confusion in lines 3 and

5. The variable var is pulled from a hash map and then, without

further checks, converted to a double
1
. The matrix plays no role

in this vulnerability and thus the explanation misleads a manual

investigation of the finding.

1 ...
2 float matrix[3][3] = {{0,0,0}, {0,0,0}, {0,0,0}};
3 if (zend_hash_index_find(Z_ARRVAL_PP(var), (j), (void **)

&var2) == SUCCESS) {
4 SEPARATE_ZVAL(var2);
5 convert_to_double(*var2);
6 matrix[i][j] = (float)Z_DVAL_PP(var2);
7 ...

Figure 1: Type confusion bug in the PHP Zend engine.

Interestingly, the tokens with the greatest attention scores from

LineVul in line 2 consist of “float”, “}}” and “{{”. In the training set,

these tokens co-occur 198 times for vulnerable functions and only

67 times for non-vulnerable functions, thus creating a spurious

correlation. The model incorrectly learns this correlation as an

indicator for a vulnerable function. Obviously, there must be more

biases present in the training dataset such as the one identified here,

which makes the model concentrate on irrelevant artifacts.

The problem becomes worse when we try to slightly change the

coding style and obfuscate some lines as seen in Figure 2. Although

the function is semantically equivalent and onlyminimally changed,

LineVul now classifies this function as clean, despite the original

vulnerability being still present.

1 ...
2 float matrix[3 & 0xF][3 & 0xF] = {
3 {0o0, 0o0, 0o0}, {0o0, 0o0, 0o0}, {0o0, 0o0, 0o0}};
4 if (zend_hash_index_find(Z_ARRVAL_PP(var), (j), (void **)&

var2) ==
5 SUCCESS) {
6 SEPARATE_ZVAL(var2);
7 convert_to_double(*var2);
8 matrix[i][j] = (float)Z_DVAL_PP(var2);
9 ...

Figure 2: Obfuscated version of type confusion bug.

To visualize the effect of spurious correlation, we present Figure 3

which derives a simple causal model for a vulnerability discovery

function 𝑓\ [44]. Here, 𝑋 is the input data and 𝑌 is the label, being

either vulnerable or clean. The learning goal of 𝑓\ is to find

a relationship between the learned representation 𝑅 to the label

𝑌 . There is a relationship 𝐶 ← 𝑋 → 𝐴 denoting that the causal

features 𝐶 and trivial or biased feature patterns 𝐴 both influence

the final latent representation 𝑅. Missing or different artifacts in

unseen data then weaken the model performance.

1
https://cve.report/CVE-2014-2020

AISec ’23, November 30, 2023, Copenhagen, Denmark Erik Imgrund, Tom Ganz, Martin Härterich, Lukas Pirch, Niklas Risse, and Konrad Rieck

Code
X

 Artifacts
A

Causal
C

R Label
Y

Figure 3: Simple causal model of machine learning for vul-
nerability discovery.

The artifacts are called confounders in causal learning and in our

example, the confounders originate from irrelevant features that

cause the model to learn biased representations. A simple example

for an artifact would be a common code style in all vulnerable

samples and a different style for all clean samples. The ultimate

goal in this work is not only to measure 𝑓 and the actual influence of

𝐴 but also to remediate this influence since these learned artifacts

hinder the model from generalizing well over unseen or out-of-

distribution data, that is, real-world code.

To this end, we identify three sources of bias that can manifest

as artifacts in program code:

(1) Coding style. Every collected sample has an implicit coding

style. Since many open-source projects use automatic linting,

it is likely that samples from one project to another differ in

their styles. If there are more vulnerable samples from one

project than another, the coding style correlates with 𝑌 .

(2) Control flow. Projects often contain different calling hier-

archies or indirections due to programming patterns, for

instance, object-oriented design principles. Several projects

and authors prefer one pattern over another which may

introduce further confounding bias.

(3) Naming. Different samples from different projects naturally

vary in their naming conventions. Hence, vulnerable sam-

ples may potentially differ in variable naming compared to

clean samples. Although it is common to mask such symbols,

recent works unfortunately desist from normalizing them.

This list is non-exhaustive since, potentially, there can be an

infinitely large number of artifacts. Nonetheless, we state that a

model is confounded if artifacts heavily influence its decision. Since

other works do not account for this, we propose a more reliable

evaluation methodology.

3.2 Evaluating Models
Current models for learning-based vulnerability discovery suffer

from low transferability and generalizability. Yet, they pertain to

a high true positive and true negative rate on test sets aligning

with the training distribution [7, 8]. How a security expert can gain

insight into how well the model performs in practice is an open

research question. The performance can not be truly measured on

the test set, as it is of the same distribution as the training set and

might lack diversity compared to real-world code samples.

Training the model on one dataset and testing on another is

a possible evaluation approach; however, it remains unclear how

many datasets one has to evaluate.Worse still, vulnerability datasets

are scarcely available [7]. Using more datasets improves the insights

gained, but increases the amount of data and computing resources

necessary for the evaluation. As a consequence of this situation,

we propose a method that uses only one dataset.

To motivate our evaluation scheme, we briefly introduce the

concept of causal inference that reveals influencing variables. If we

inspect Figure 3, it is trivial to see that the representation learned

by a model 𝑓 directly influences the predicted label 𝑌 . But instead

of using the sample under analysis to directly influence the repre-

sentation, we model it so that 𝑋 has a causal and a trivial part [44].

We call the latter the confounding variable, shortcut feature, or

spurious correlation [44]. As a result, we have three relationships:

𝐴← 𝑋 → 𝐶 ,𝐶 → 𝑅 ← 𝐴, and 𝑅 → 𝑌 . To measure the true causal

correlation and to remove confounding variables in causal learning,

it is common to calculate the influence of one variable affecting the

other by intervention.
This can be done using do-calculus [36], that is, we can stratify

the confounder by calculating the influence of 𝐶 → 𝑌 given all

possible artifacts from 𝑎 ∈ 𝐴 [36]:

𝑃 (𝑌 |𝑑𝑜 (𝐶)) =
∑︁
𝑎∈𝐴

𝑃 (𝑌 |𝐶,𝐴 = 𝑎)𝑃 (𝑎) (3)

We approximate the distribution of 𝐴 by calculating the esti-

mated likelihood of the code samples 𝑋 = (𝑥0, . . . , 𝑥𝑛) with our

different perturbations. As using all possible artifacts is not feasible,

we use a subset 𝐴′ ⊂ 𝐴 and define an artifact 𝑎 ∈ 𝐴′ to be a variant
of the code samples 𝑘𝑎 (𝑋) = (𝑘𝑎 (𝑥0), . . . , 𝑘𝑎 (𝑥)𝑛) obtained by one

of our perturbations 𝑎 ∈ 𝐴′. Equation 3 then becomes:

𝑃 (𝑌 |𝑑𝑜 (𝐶)) ≈
∑︁
𝑎∈𝐴′

𝑃 (𝑌 |𝐶,𝐴 = 𝑎)𝑃 (𝑎) . (4)

We estimate 𝑃 (𝑎) = 𝑃\ (𝑎)∑
𝑎′ ∈𝐴′ 𝑃\ (𝑎′)

≈ 𝑃 (𝑎) empirically by calcu-

lating the likelihood of a particular variant of the code sample 𝑃\ (𝑎)
utilizing a generative LLM with weights \ . We calculate the likeli-

hood of each token of the code sample dependent on the previous

tokens. Since calculating the likelihood of the entire sequence by

multiplying the individual token likelihoods is numerically infeasi-

ble, we instead average the log-likelihoods over the entire sequence

to obtain the approximate likelihood, similar to the calculation of

the perplexity, a popular metric for generative LLMs [37].

Further, we can measure the impact of the artifacts on the model

by calculating the average relative difference between the original

model decision compared to the decision when every artifact is

marginalized. We call this difference the confounding effect,

𝑐 =

∑
𝑎∈𝐴′ 𝑃 (𝑌 |𝐶,𝐴 = 𝑎)𝑃 (𝑎) − 𝑃 (𝑌 |𝐶,𝐴)

𝑃 (𝑌 |𝐶,𝐴) (5)

As an intuition, consider 𝑐 = 0, meaning that 𝑃 (𝑌 |𝐶,𝐴) = 𝑃 (𝑌 |𝑑𝑜 (𝐶)).
However, the more 𝑐 deviates from 0, the greater the influence of

the artifacts and 𝑃 (𝑌 |𝐶,𝐴) ≠ 𝑃 (𝑌 |𝑑𝑜 (𝐶)).
The application of different perturbations to the code should

resemble a causal intervention. A non-confounded model should

perform equally on semantically equivalent but perturbed code

since the decision should solely depend on the causal feature part.

AISec ’23, November 30, 2023, Copenhagen, Denmark

Let us define the model predictions on the code samples under

different perturbations as ∀𝑎 ∈ 𝐴′ : 𝑓 (𝑘𝑎 (𝑥)). Consequently, this
intervention provides insight into how the model behaves under

different artifacts and yields a more robust basis for model evalu-

ation and comparison. In a more practical sense, suppose that we

have a metricM : 𝑓 → R assessing the quality of a learning-based

vulnerability discovery model, such as the accuracy. We then have

𝑐 =

∑
𝑎∈𝐴′M(𝑓 (𝑘𝑎 (𝑥))𝑃 (𝑎) −M(𝑓 (𝑥))

M(𝑓 (𝑥)) (6)

and can measure the influence of the confounder using the con-
founding effect as defined above.

3.3 Reducing Confounder
The measurement of the confounding effect of artifacts on the

model is one side of the coin, but on the other side, we also want

to reduce the influence of such trivial patterns on the model. We

propose three methods that can be applied to either LLMs or GNNs

for vulnerability discovery that mitigate the effects in practice.

LLMs with normalized code. To remove the effect of style arti-

facts on LLMs, one naive solution is to normalize the code. Code

normalization is the modification of code so that it conforms to a

given style guide, which reduces, but does not remove, the impact

of the personal style on the code [21]. As a code normalization

method, we apply one code style to all methods and use the uni-

formly formatted code as training data. This has the same effect

of normalizing the coding style, and thus removing style artifacts

while preserving closeness to real-world code and thus making

better use of the pretraining than the next method. We abstain from

normalizing the variable naming by masking the variable names

during training so that the effect of the naming artifacts can be

measured as part of our evaluation.

LLMs with pre-tokenized code. Another solution follows from the

work of Roziere et al. [38], who propose to tokenize the code before

applying the byte-pair encoding using a programming language-

specific lexer. They feed the resulting tokens as space-separated

plain text into the model, a process we refer to as pre-tokenization.
We adopt the same methodology, but as our models were trained

with untokenized code, we expect a performance drop from the

different data distributions obtained, as the code samples now lack

all newlines and other style practices common to real-world code.

Retraining the LLM completely on tokenized code is impractical

since the main benefit of LLMs is the adaptability to several tasks

using fine-tuning.

Causal graph learning. A more principled approach arises from

the work of Sui et al. [44] in the domain of GNNs: By applying an

intervention directly to the learning model, they can mitigate the

impact of confounding variables. This is done by conditioning the

causal input features, in this case, a code graph, per sample with

all possible trivial subgraphs obtained during training.

To encode the input graph, a graph isomorphism network (GIN)

layer is used followed by two MLPs to calculate a relevance score

for nodes and edges. For any node 𝑣𝑖 ∈ 𝑉 we calculate their node

attention and for any pair of nodes (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 their edge attention.

Furthermore, the output dimension of theMLPs is halved to perform

a latent space disentanglement, where the first half will later be

optimized to contain only the relevant nodes that are causal for our

task and the second half will be trained to only contain the trivial

part of the graph, in this case, the artifacts.

A mean readout layer is applied last as a pooling strategy fol-

lowed by a final MLP with softmax activation as the prediction

head returning either vulnerable or clean. Using the attention

scores we can calculate attention masks for both, the causal and

trivial nodes, and causal and trivial edges. We apply these masks

to the adjacency matrix and feature matrix of the input graph re-

sulting in the causal and trivial subgraphs respectively. The causal

graph can be used to explain the prediction and track the cause of

a vulnerability.

To train the model in a supervised fashion, we first apply a tra-

ditional negative log-likelihood (NLL) loss to our ground truth and

the latent representation of the causal graph. Then, we take the

representation of the trivial subgraph and optimize the model to

separate trivial and causal features by fitting the softmax distri-

bution using the trivial graph to a uniform distribution using the

Kullback-Leibler divergence (KL). Finally, to stratify the confounder,

another NLL loss is calculated between the ground truth and the

prediction, while the causal graph is augmented with a random triv-

ial subgraph from another graph in the dataset. During the training

procedure, the model essentially learns to ignore trivial patterns.

4 EVALUATION
In this section, we describe the experimental setup and the results

of our evaluation. The experiments are devised to give answers

to the following research questions. We publish our code for easy

experimental reproduction
2
.

• RQ1: Are confounding effects measurable?

• RQ2: How do artifacts influence vulnerability localization?

• RQ3: Can the confounding effect be reduced?

4.1 Experimental Setup
We rely on Fraunhofer-CPG by Weiss and Banse [55] and networkx
[19] as tools to generate code graphs. The graph-based models are

implemented using Pytorch Geometric [14] and trained on AWS

EC2 g4dn instances. We use the transformers library [56] to fine-

tune the transformer-based models. The tokenization of code is

calculated using tree-sitter as the parser. The hyperparameters of

all models are documented in Table 1.

2
https://github.com/SAP-samples/security-research-confoundingeffects

Table 1: Hyperparameters used for considered models.

ReVeal StackLSTM CGIN CodeT5+ LineVul

Optimizer Adam AdamW

Learning Rate 5 · 10−4 10
−4

10
−4

10
−5

10
−5

Epochs 70 50 14 3 10

Batch Size 128 1 2 8 8

Warmup Steps 0 0 0 50 50

Weight Decay 10
−4

0 0 0.01 0.01

Number of parameters 719k 1.7M 222k 223M 249M

AISec ’23, November 30, 2023, Copenhagen, Denmark Erik Imgrund, Tom Ganz, Martin Härterich, Lukas Pirch, Niklas Risse, and Konrad Rieck

Table 2: Function-level accuracies with different augmentations. CodeT5+𝑛 and LineVul𝑛 are trained on normalized data and
CodeT5+𝑡 is trained on tokenized data.

Transformation ReVeal CGIN StackLSTM CodeT5+ CodeT5+𝑛 CodeT5+𝑡 LineVul LineVul𝑛 LineVul𝑡

None 63.57% 61.55% 62.79% 94.62% 83.15% 59.51% 93.09% 83.62% 65.21%

Chromium 63.62% 62.24% 62.79% 59.21% 66.46% 59.56% 58.76% 68.68% 65.25%

Mozilla 63.59% 61.39% 62.84% 59.18% 66.54% 59.56% 57.67% 67.63% 65.25%

Google 63.53% 63.42% 62.79% 59.16% 66.20% 59.56% 58.95% 68.39% 65.25%

LLVM 63.43% 60.37% 62.84% 59.01% 66.54% 59.56% 58.73% 68.22% 65.25%

Uglify 62.29% 58.02% 61.04% 50.67% 55.62% 55.32% 50.44% 55.77% 60.30%

Uglify (-Whitespace) 62.86% 58.47% 61.04% 54.15% 57.37% 55.35% 49.51% 55.88% 61.02%

Obfuscate 50.51% 59.41% 50.74% 53.61% 59.41% 60.73% 52.11% 57.29% 60.74%
Obfuscate (+Format) 50.46% 56.12% 50.71% 37.14% 58.13% 61.19% 40.56% 53.60% 61.44%
Obfuscate (-Whitespace) 49.76% 55.28% 53.12% 52.05% 55.79% 55.50% 51.02% 53.68% 60.92%
Causal Accuracy 64.18% 61.59% 64.75% 59.09% 65.41% 59.80% 58.71% 67.46% 65.02%

Dataset. We use Big-Vul [13] as the underlying dataset for all

of our experiments, as it is one of the biggest currently available

datasets with line-level defect information. The dataset consists

of 26 635 vulnerable and 352 606 non-vulnerable functions from

different code repositories.

Transformations. We apply transformations on the dataset that

implicitly remove artifacts to obtain different variants of the dataset

for training and evaluation. These transformations can be catego-

rized into three classes:

(1) Styling. We apply style formatting using clang-format [21]

with different popular predefined styles. We test the pre-

defined styles Chromium, Google, LLVM, and Mozilla for a
diverse range of style choices. As previously described, ap-

plying the formatting removes style-related artifacts.

(2) Uglification. We test two different kinds of “uglification”. The

first variant consists of removing comments and renaming

all variables to a string of twelve randomly chosen lower-

case letters and applying style normalization. The second

variant is the same except for additionally removing all un-

needed whitespace. This transformation removes artifacts in

code style and naming whilst also partially removing causal

information, as the variable names are typically chosen de-

liberately and essential to detect vulnerabilities.

(3) Obfuscation. The obfuscation consists of randomly renam-

ing variables and functions, removing comments, adding

unneeded statements, adding function definitions, and re-

placing numbers with an obfuscated equivalent number. The

numbers are obtained by converting them to decimal, bi-

nary, octal, or hexadecimal. Additionally, we evaluate the

models on the obfuscated code after applying a predefined

coding style and after removing all unneeded whitespace.

The obfuscation also removes control-flow artifacts, since

statements are randomly inserted.

Models. We have chosen a diverse set of models for evaluation,

both graph-based and text-based. For graph-based models, we train

and evaluate ReVeal as a state-of-the-art GNN for vulnerability de-

tection [7] and causal graph isomorphism network (CGIN) [44] as

a causal graph model that mitigates the effect of artifacts. For text-

based models, we choose LineVul [15] and fine-tune a CodeT5+ [52]

model with 220 million parameters similar to Chen et al. [8] and

Thapa et al. [46]. We fine-tune the transformer models on the origi-

nal code available as part of the dataset. Additionally, we train the

models on normalized and tokenized code.

Delétang et al. [11] show that transformer models cannot gen-

eralize well over different-sized input token lengths. The authors

show that classical LSTMs with differentiable memory provide

stronger generalization performance than transformer models on

increasingly complex tasks. Since the number of tokens within

samples can impose another bias, we extend VulDeepecker [31], a

LSTM-based vulnerability discovery model, with a differentiable

stack [27]. VulDeePecker is generally inferior to the other mod-

els [7]. However, an LSTM with access to a stack has been shown

to provide advantageous results for regular and context-free tasks,

similar to the capabilities of a real-world parser [11].

Evaluation tasks and metrics. The models are evaluated based

on two tasks: function-level binary classification with the classes

vulnerable and clean and line-level classification of known-

vulnerable functions. We use the balanced accuracy, as the mean

between the true positive and true negative rate, for both tasks,

due to the heavily imbalanced datasets. Additionally, we measure

the causal accuracy as the balanced accuracy based on causal pre-

dictions according to Equation 4. Further, we use the balanced

accuracy as metricM for measuring the confounding effect from

Equation (6). For the line-level task, we use the top-1, top-3, and

top-5 accuracy as introduced by Fu and Tantithamthavorn [15].

To obtain a ranking of the lines by each model, we use model-

specific explainability methods. For the graph-based models we

obtain node relevance scores and then propagate these scores to

all lines included in the node to arrive at a line relevance [16].

We obtain node relevance scores for ReVeal by applying Grad-

CAM [41] and for CGIN by utilizing the causal node attention scores.

For the transformer-based models, we calculate the relevance of

each line in the same way as proposed by Fu and Tantithamthavorn

[15]. The relevance of each token in the line is summed to obtain the

aggregate line relevance. The token relevance is similarly obtained

as the attention to each token in the first layer of the encoder.

AISec ’23, November 30, 2023, Copenhagen, Denmark

As our transformations can change the layout of the code and

thus the locations of the vulnerable lines, we need to match the

original lines to the transformed lines. As thematching is non-trivial

and harder with additional transformations, we only test on the

original dataset and the styled variants. We match the vulnerable

lines to the formatted lines if one of the lines is an exact substring

of the other line without considering whitespace. As a baseline,

we also measure the expected top-k accuracy with random line

orderings, which can be calculated based on the expected best rank

of any vulnerable line, which is distributed according to a particular

negative hypergeometric distribution. More formally, the expected

rank is 𝐸 (𝑋) for 𝑋 ∼ 𝑁𝐻𝐺 (|𝐿 |, |𝐿0 |, 1) with the set of all lines 𝐿

and the set of non-vulnerable lines 𝐿0. By calculating the expected

rank of each code sample in our test set, we can obtain the expected

top-k accuracy for a random baseline.

4.2 Results
In this section, we provide our experimental results and use the

outcomes to provide answers to our research questions.

RQ1: Are confounding effects measurable? In Table 2, we present

our results for the function-level prediction scores for all eight mod-

els measured in their balanced accuracy. The best performance per

transformation is bold and the second best value is italic. CodeT5+

and LineVul have an initial balanced accuracy of 94.62% and 93.09%

on the test set, respectively. That is an approximate increase of 50%

relative to ReVeal, StackLSTM, and CGIN. Interestingly, the detec-

tion performance of the transformer models shrinks to a detection

rate lower than that of the other models when the test samples are

transformed using different styles. With less than 60% balanced

accuracy CodeT5+ and LineVul are performing worse than the non-

transformer-based models having about 63% balanced accuracy on

average. This is a clear hint that the transformer models overfit on

artifacts in the train and test distribution aligning with the coding

style. The discrepancy between the performances with and with-

out augmentations for the other models is negligible, with CGIN

having the overall worst results with approximately 61%, followed

by StackLSTM with 62% and ReVeal with 63%.

The situation becomes worse when comparing the performances

of the transformer models when provided with uglified code, that

is, inlining functions, and removing whitespace and tabs. While

the other models pertain to a comparable performance at around

60%, the performance of LineVul and CodeT5+ is not different from

random guessing. The uglifier without the removal of whitespace

leaves CodeT5+ with 54%, while LineVul is still comparable to a ran-

dom guesser. Using an obfuscator is the most drastic augmentation

transformation, as it even changes control flow and adds superflu-

ous function calls. All models, except CGIN, are not significantly

better than random guessing in this scenario.

Furthermore, when comparing the accuracy obtained based on

causal-only features, it is obvious that the initial performance of

CodeT5+ and LineVul is based on artifacts instead of causal features

with only 59.80% and 58.71% causal accuracy, respectively. The

graph-based models ReVeal and CGIN as well as StackLSTM on the

other hand, obtain a causal accuracy near their initial performance,

indicating that their predictive performance is based on causal

features instead of artifacts.

Re
Ve

al
CGIN

Sta
ckL

ST
M

Cod
eT

5+

Cod
eT

5+
n

Cod
eT

5+
t

Lin
eV

ul

Lin
eV

ul n

Lin
eV

ul t
60

40

20

0

Co
nf

ou
nd

in
g

Ef
fe

ct
 (c

) i
n

%

Figure 4: Confounding effect on function-level accuracy.

Re
Ve

al
CGIN

Sta
ckL

ST
M

Cod
eT

5+

Cod
eT

5+
n

Cod
eT

5+
t

Lin
eV

ul

Lin
eV

ul n

Lin
eV

ul t

40

20

0

20

40

Co
nf

ou
nd

in
g

Ef
fe

ct
 (c

) i
n

%

Figure 5: Confounding effect on Top-5 line-level accuracy.

We show that there are indeed artifacts encoded in the training

set that negatively influence the models when transferring to se-

mantically equivalent code. If the model already fails in predicting

vulnerabilities in the test set with the same distribution as the train-

ing set but withminor changes, it is highly uncertain how it behaves

on real data. The reported performance scores of the models are not

suitable for a veracious comparison. While the initial highest per-

formance is 94.62%, the true models’ capabilities collectively level

off at around 60%. In summary, the influence of the confounding ar-

tifacts distorts the reported performance by up to 60% measured by

the discrepancy between the test and augmented test set. Figure 4

summarizes the confounding effect on different models visualizing

the degrees of performance drop. The transformers are in fact the

models most affected in this experiment.

RQ2: How do artifacts influence vulnerability localization? Ta-

ble 3, Table 4 and Table 5 show the top-1, top-3 and top-5 line-level

accuracy, respectively. The best scores per transformation are high-

lighted in bold. The first column denotes the performance of the

random baseline. This is included as a reference for the performance

of the models, as well as to show the limitations of our measure-

ment method. Due to the fuzzy matching of formatted lines to the

original lines, the number of total lines varies in the formatted code,

and consequently, the expected performance changes slightly.

Although the performance of the transformermodels for function-

level prediction is greatly influenced by the application of code

formatting, only much smaller differences for line-level localization

can be observed. For LineVul, the top-1 accuracy drops from 40.33%

to at most 38.67% while for CodeT5+ the performance increases

from 38.67% up to 44.75%. For the top-3 accuracy, the same effect

AISec ’23, November 30, 2023, Copenhagen, Denmark Erik Imgrund, Tom Ganz, Martin Härterich, Lukas Pirch, Niklas Risse, and Konrad Rieck

Table 3: The Top-1 line-level Accuracy of the Transformer and Graph models with different code styles.

Codestyle Random ReVeal CGIN StackLSTM CodeT5+ CodeT5+𝑛 CodeT5+𝑡 LineVul LineVul𝑛 LineVul𝑡

None 26.86% 43.09% 43.65% 39.23% 38.67% 38.67% 38.67% 40.33% 39.78% 41.44%

Chromium 26.86% 44.20% 43.65% 45.86% 44.75% 44.75% 44.75% 37.02% 37.02% 37.02%

Mozilla 25.71% 43.65% 42.54% 44.20% 40.88% 40.88% 40.88% 38.67% 37.57% 39.23%

Google 28.57% 44.75% 44.20% 45.30% 44.75% 44.75% 44.75% 38.67% 37.57% 37.57%

LLVM 28.57% 44.20% 44.20% 45.30% 43.65% 43.65% 43.65% 35.91% 34.25% 34.81%

Table 4: The Top-3 line-level Accuracy of the Transformer and Graph models with different code styles.

Codestyle Random ReVeal CGIN StackLSTM CodeT5+ CodeT5+𝑛 CodeT5+𝑡 LineVul LineVul𝑛 LineVul𝑡

None 46.86% 59.67% 58.01% 58.56% 64.64% 64.64% 64.64% 62.43% 63.54% 64.09%

Chromium 46.86% 60.77% 57.46% 60.77% 64.64% 64.09% 63.54% 56.91% 55.25% 56.35%

Mozilla 45.14% 61.88% 58.56% 60.77% 64.09% 63.54% 63.54% 61.88% 60.77% 60.22%

Google 47.43% 61.33% 60.77% 61.88% 64.64% 64.09% 64.09% 55.25% 55.25% 55.25%

LLVM 46.86% 61.33% 58.56% 61.88% 64.64% 64.09% 64.09% 56.91% 56.35% 55.80%

Table 5: The Top-5 line-level Accuracy of the Transformer and Graph models with different code styles

Codestyle Random ReVeal CGIN StackLSTM CodeT5+ CodeT5+𝑛 CodeT5+𝑡 LineVul LineVul𝑛 LineVul𝑡

None 57.71% 67.96% 68.51% 66.30% 71.82% 71.82% 71.82% 69.06% 68.51% 69.06%

Chromium 57.71% 69.61% 69.06% 69.61% 71.82% 71.82% 72.38% 64.64% 64.09% 64.64%

Mozilla 57.71% 70.72% 69.61% 70.17% 70.17% 70.17% 70.72% 66.85% 66.30% 65.75%

Google 57.71% 69.61% 70.72% 69.61% 71.82% 71.82% 72.38% 62.98% 62.98% 63.54%

LLVM 57.71% 69.61% 69.61% 69.61% 71.82% 71.82% 72.38% 64.64% 62.98% 64.09%

can be seen for LineVul with a drop from 62.93% to 55.25% and at

most 61.88%, while CodeT5+ does not induce any big differences.

The same can be seen in the top-5 accuracy. The graph-based mod-

els CGIN and ReVeal yield smaller differences in their performance

and in general improve when a code style is applied. Their results

closely follow the expected performance and the variations in per-

formance can be explained by changes in the total number of lines

and the matched number of flawed lines.

All models show better than random performance, even when

applying the code formatting augmentation, implying they are not

relying on styling artifacts for line-level localization. For the top-1

accuracy, the graph-based models and CodeT5+ are competitive and

within reach of each other depending on the code style used with

no clear best approach. The performance of LineVul on the other

hand is worse than all the others, which is also seen for the top-5

accuracy and with mixed results for the top-3 accuracy. For the

latter, ReVeal and CGIN show similar performance with ReVeal

being better in all cases, while CodeT5+ is better than all other

models. CodeT5+ is also better than the other models in all cases

but one when considering its top-5 accuracy.

In summary, we see only a slight effect of artifacts on vulnerabil-

ity localization for CodeT5+ and the graph-based models. LineVul

is definitely affected by the removal of artifacts from the data and

shows an overall weaker performance. Models that are less affected

by the application of code formatting show an overall greater per-

formance for vulnerability localization, indicating that generalizing

code formatting changes are helpful to vulnerability localization. It

is interesting that CodeT5+ does not see a performance drop in vul-

nerability localization, even though it was present in function-level

prediction, indicating that the model is attending to the correct

parts of the code but drawing wrong conclusions. Moreover, the

performance difference between LineVul and CodeT5+ cannot be

satisfactorily explained, as both models are trained similarly with

the only difference being base architecture, indicating that the vul-

nerability localization performance of transformer models trained

with artifacts is unpredictable. The graph-based models on the other

hand are less affected in general and more predictable. Figure 5

visualizes the confounding effect calculated as the relative change

of top-5 line-level accuracy normalized by subtracting the random

baseline. All models suffer under the confounding effect, while

ReVeal and CGIN suffer the least.

RQ3: Can the confounding effect be reduced? Considering Table 2

again, we can see that the adjustment of the training procedure

for the transformer models significantly reduces the discrepancy

between the test and augmented test performance. LineVul trained

on normalized code achieves the best results on different styled

code of around 68%, followed by CodeT5+ trained in normalized

code with around 66%, beating the balanced accuracy scores from

ReVeal, StackLSTM and CGIN by ∼ 3%. As opposed to the tech-

nique by Roziere et al. [38], pre-tokenization of the input code may

decrease the artifact overfitting effect but its performance is still

inferior to the other non-transformer-based models.

AISec ’23, November 30, 2023, Copenhagen, Denmark

Tokenization and normalization for the LLMs also helped to

reduce the bias measured by the Uglify transformation. However,

ReVeal, StackLSTM, and CGIN outperform all transformer models.

Surprisingly, reducing the confounder effect on the transformers

helps to improve the performance on obfuscated code changes,

slightly outperforming CGIN with up to 7%.

Moreover, tokenization and normalization also boost the causal

accuracy of LineVul significantly. With a causal accuracy of 67.46%,

an increase of nearly 15% from the unnormalized model, LineVul𝑛

performs best in our testing, beating even the graph-based models.

CodeT5+𝑛 performs second-best with a causal accuracy of 65.41%,

but CodeT5+𝑡 only achieves 59.80%. We attribute this only slight

increase in performance of the tokenized model to the data distribu-

tion shift of tokenized data, which looks significantly different from

the real-world data, that the model was pre-trained on, requiring

further training. For LineVul𝑡 and CodeT5+𝑡 the causal accuracy is

equal to the accuracy of the raw data, indicating that the artifacts

initially present in the raw data are removed by tokenization.

It is also surprising that StackLSTM beats the transformer models

and CGIN on uglified code. We conjecture that the StackLSTM

learned to parse code despite syntactical differences. Considering

Figure 6, we can see that themodel learned to push opening brackets

to the stack and pop closing ones from the stack if encountering

them. Interestingly, StackLSTM learned to mimic a parser using the

vulnerability discovery dataset.

We have shown that we can reduce the confounding influence

of artifacts in the dataset on the detection models. GNNs are less

influenced by code obfuscations than by control flow distortions

as opposed to transformer models for which we observe the op-

posite effect. LSTMs are also less susceptible to style changes and

CGIN is a viable approach to reduce the confounding influence.

Transformer models and specifically LLMs are severely influenced

by slight code transformations, however, we can mitigate this by

rather normalizing the input code than tokenizing it.

In the end, LLMs prove their superiority to LSTMs and GNNs

when correctly trained. Recall Figure 4, CGIN and CodeT5+ trained

on pre-tokenized code reduced the confounding effect the most.

While training on normalized code is also a viable strategy, in

general, inferior to GNNs. The confounding effect on LineVul is

0 5 10 15 20 25
Probability in %

*
:
.
"
;

&
{

->
if

return
(
_

&&
const

[
!=

(a) Probability for pushing a token
to the stack.

0 5 10 15 20 25
Probability in %

;
,
)
}
=
if
]

NULL
*/

==
++

0
REG_CONST

1
case

#

(b) Probability for popping a to-
ken from the stack.

Figure 6: The learned stack policy for StackLSTM.

Re
Ve

al
CGIN

Sta
ckL

ST
M

Cod
eT

5+

Cod
eT

5+
n

Cod
eT

5+
t

Lin
eV

ul

Lin
eV

ul n

Lin
eV

ul t
60

40

20

0

20

40

Co
nf

ou
nd

in
g

Ef
fe

ct
 (c

) i
n

%

Figure 7: Confounding effect on Top-1 line-level accuracy.

Re
Ve

al
CGIN

Sta
ckL

ST
M

Cod
eT

5+

Cod
eT

5+
n

Cod
eT

5+
t

Lin
eV

ul

Lin
eV

ul n

Lin
eV

ul t

40

20

0

20

Co
nf

ou
nd

in
g

Ef
fe

ct
 (c

) i
n

%

Figure 8: Confounding effect on Top-3 line-level accuracy.

largest on Top-3 line-level accuracy, considering Figure 8, while

some models, especially CodeT5+, even benefit from the artifact

removal as depicted by Figure 7 where they have a positive change

of up to 50% detection improvement.

Interestingly, the shape and values of the confounding effect on

the transformer models trained on the original data are nearly the

same as those of the corresponding models trained on normalized

and pre-tokenized data. As only the encoder input attention is used

for generating line-level localization as per LineVul’s method, this

indicates that the encoder input attention is not affected by the

presence of style artifacts in training while being greatly influenced

by the presence of style artifacts at inference.

5 IMPACT
In Section 4, we have measured the confounding effect on both the

function-level and line-level balanced accuracy for vulnerability dis-

covery models. We have seen that their predictive performance and

bug localization capabilities severely depend on artifacts present

in the dataset. Furthermore, we demonstrate that we can not only

measure but also reduce the confounding effect through our model

or pre-processing choices. We provide here the most critical sug-

gestions derived from our experimental study.

Tokenize the Code. The first insight is that using normalized

code for fine-tuning the transformers yields the best function-level

results on the augmented samples. However, there is still a measur-

able confounding effect of up to 𝑐 = 30% for CodeT5+ and LineVul.

That means that there are probably still artifacts remaining that

normalizing code cannot account for. GNNs and StackLSTM pro-

vide better robustness in the first place but lose performance after

AISec ’23, November 30, 2023, Copenhagen, Denmark Erik Imgrund, Tom Ganz, Martin Härterich, Lukas Pirch, Niklas Risse, and Konrad Rieck

code obfuscation. CodeT5 + on tokenized code has the lowest scores

but also the lowest confounding effect with around 𝑐 = 0%. Hence,

given an LLM, pre-tokenizing the code may be the best option to

receive unbiased performance results.

Compare against GNNs. ReVeal and CGIN have the best overall

robustness against artifacts. CodeT5+, however, shows the strongest

results in accurate line-level bug localization. Since a larger con-

founding effect hints that the model does not actually learn the

underlying task, we argue that the graph-based models have better

out-of-distribution performances and are thus better applicable to

real-world cases. This is also in line with the results from Chen

et al. [8]. By utilizing normalized or tokenized training data, the

confounding effect of the transformer-based models is reduced

such that their out-of-distribution performance is improved and

competitive with GNNs.

Better Transferability. We argue that our evaluation provides a

more faithful view of vulnerability discovery models. Obviously, if

models tend to overfit to artifacts on one dataset, they lack general-

ization to another. Out-of-distribution transferability is an impor-

tant property since this also mirrors the applicability to real-world

cases. We tested LineVul on another dataset containing vulnerabil-

ities from Chromium and Debian [7]. The new test set is disjoint

from the original trainset. LineVul achieves 50%, tokenized Line-

Vul 55%, and normalized LineVul 64% balanced accuracy on the

unseen samples, underlining the usefulness of our evaluation and

stratification approach.

6 RELATEDWORK
In the following, we provide an outline of recent works that are

tangent to this research area.

Vulnerability Discovery Models. There is a notable amount of re-

search interest in developing novel vulnerability discovery models

and comparing them to prior ones. With Vuddy [25] being a heuris-

tic vulnerable clone detectionmodel, Draper [39] and VulDeePecker

[31] being one of the first token-based deep learning solutions,

consecutive works started to benchmark their approaches against

them. Slicing-based approaches [9, 30] and graph-learning-based

approaches starting with Devign [65], have followed shortly after

[7, 50, 65] reporting remarkable success even compared to tradi-

tional rule-based tools. The novel soft-attention mechanism from

Vaswani et al. [48] has fostered research and approaches like Vul-

SPG [64] and Cheng et al. [10] report even better results. Finally,

LLMs like RoBERTa [34] or CodeT5 [53] have been applied to vul-

nerability discovery tasks [8, 15, 46] achieving currently the best

performances on realistic datasets.

Explainable AI for Security. With the success of learning-based

function-level vulnerability discovery models comes the problem

with a lack of interpretability and defect localization [16]. Explain-

able AI helps to open up black boxes such as deep neural net-

works [4, 47]. This is even more critical to applications in a security

context. Under the sheer number of explainability algorithms, find-

ing the best suited for vulnerability discovery has been an active

research question [54, 66]. Ganz et al. [16] investigate how a secu-

rity practitioner can compare different localization of bugs, as a

bug can be rarely pinned down to a single line [16, 64].

Fallacies in Vulnerability Discovery. Arp et al. [3] give rise to

fallacies in developing ML models for security. For instance, they

examine which metrics may induce a biased view of the perfor-

mance, and how artifacts in the dataset can negatively impact the

true performance. Chakraborty et al. [7] find that current datasets

as the one from Zhou et al. [65] or Li et al. [31] are unrealistic

and biased. They further show that most models lack transfer-

ability to out-of-distribution datasets by cross-evaluating popular

models. Wang et al. [50] criticize datasets obtained through biased

approaches like filtering commit messages by certain keywords.

They propose to filter samples using a classifier identifying security-

relevant patches. We leverage these insights in our experimental

design as well as our metrics and dataset choice.

Code Transformations. In the experiments presented in this paper,

we use specific types of transformations to investigate the confound-

ing effects of artifacts on LLMs and graph-based models, specifically

the application of predefined styles, uglification, and obfuscation.

Applying transformations to code in order to investigate the limits

of LLMs or graph-based models has received growing attention

in the vulnerability discovery research community. Examples of

such transformations that have been investigated are identifier

renaming [20, 59, 60, 62, 63], insertion of unexecuted statements

[20, 43, 60, 62] or replacement of code elements with equivalent el-

ements [2, 28]. We continue this investigation by providing a novel

implementation of transformations, by applying them to measure

the confounding effects of artifacts, and by evaluating strategies to

mitigate such effects.

7 CONCLUSION
In this work, we show that current vulnerability discovery models

are severely influenced by artifacts such as code styles, variable

naming, and common control flow patterns. The true performance

of such models is hardly measurable and the reported ones from

recent works can not be extrapolated to out-of-distribution code

samples. We link the problem to spurious correlations in the dataset

enabling models to shortcut decisions using unrelated information.

We show that some models are less impacted by confounders and

others more. Especially, large language models achieve remarkable

results, but when provided with slightly modified code, their initial

performance degrades. We propose three mitigations to drastically

improve performance as a remedy to spurious correlation.

ACKNOWLEDGMENTS
The authors gratefully acknowledge funding from the German Fed-

eral Ministry of Education and Research (BMBF) under the grants

IVAN (16KIS1165K) and BIFOLD (BIFOLD23B), from Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation) un-

der Germany’s Excellence Strategy – EXC 2092 CASA – 390781972,

and from the European Research Council (ERC) under the consol-

idator grant MALFOY (101043410).

AISec ’23, November 30, 2023, Copenhagen, Denmark

REFERENCES
[1] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learn-

ing to Represent Programs with Graphs. CoRR abs/1711.00740 (2017).

arXiv:1711.00740 http://arxiv.org/abs/1711.00740

[2] Leonhard Applis, Annibale Panichella, and Arie van Deursen. 2021. Assessing

Robustness of ML-Based Program Analysis Tools using Metamorphic Program

Transformations. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1377–1381. https://doi.org/10.1109/ASE51524.2021.

9678706

[3] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio

Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2020. Dos

and Don’ts of Machine Learning in Computer Security. CoRR abs/2010.09470

(2020). arXiv:2010.09470 https://arxiv.org/abs/2010.09470

[4] Vaishak Belle and Ioannis Papantonis. 2021. Principles and Practice of Explainable

Machine Learning. Frontiers in Big Data 4 (2021). https://doi.org/10.3389/fdata.

2021.688969

[5] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural

Code Comprehension: A Learnable Representation of Code Semantics. CoRR
abs/1806.07336 (2018). arXiv:1806.07336 http://arxiv.org/abs/1806.07336

[6] Sicong Cao, Xiaobing Sun, Lili Bo, Ying Wei, and Bin Li. 2021. BGNN4VD:

Constructing Bidirectional Graph Neural-Network for Vulnerability Detection.

Inf. Softw. Technol. 136 (2021), 106576.
[7] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.

Deep learning based vulnerability detection: Are we there yet. IEEE Transactions
on Software Engineering (2021).

[8] Yizheng Chen, Zhoujie Ding, Xinyun Chen, and David A. Wagner. 2023. Di-

verseVul: A New Vulnerable Source Code Dataset for Deep Learning Based

Vulnerability Detection. ArXiv abs/2304.00409 (2023).

[9] Xiao Cheng, HaoyuWang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong:

Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network.

ACM Trans. Softw. Eng. Methodol. 30, 3, Article 38 (apr 2021), 33 pages. https:

//doi.org/10.1145/3436877

[10] Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. 2022. Path-Sensitive

Code Embedding via Contrastive Learning for Software Vulnerability Detection.

In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis (Virtual, South Korea) (ISSTA 2022). Association for Comput-

ing Machinery, New York, NY, USA, 519–531. https://doi.org/10.1145/3533767.

3534371

[11] Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin

Wenliang, Elliot Catt, Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness,

and Pedro A. Ortega. 2023. Neural Networks and the Chomsky Hierarchy.

arXiv:2207.02098 [cs.LG]

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[13] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code

Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories (Seoul, Republic
of Korea) (MSR ’20). Association for Computing Machinery, New York, NY, USA,

508–512. https://doi.org/10.1145/3379597.3387501

[14] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[15] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-

based Line-Level Vulnerability Prediction. In 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories (MSR). IEEE.

[16] Tom Ganz, Martin Härterich, Alexander Warnecke, and Konrad Rieck. 2021.

Explaining Graph Neural Networks for Vulnerability Discovery. In Proceedings
of the 14th ACM Workshop on Artificial Intelligence and Security (Virtual Event,

Republic of Korea) (AISec ’21). Association for Computing Machinery, New York,

NY, USA, 145–156. https://doi.org/10.1145/3474369.3486866

[17] Tom Ganz, Philipp Rall, Martin Härterich, and Konrad Rieck. 2023. Hunting for

Truth: Analyzing Explanation Methods in Learning-based Vulnerability Discov-

ery. In 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P).
524–541. https://doi.org/10.1109/EuroSP57164.2023.00038

[18] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat, Josselin

Feist, and Laurent Mounier. 2016. Toward Large-Scale Vulnerability Discovery

Using Machine Learning. In Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy (New Orleans, Louisiana, USA) (CODASPY
’16). Association for Computing Machinery, New York, NY, USA, 85–96. https:

//doi.org/10.1145/2857705.2857720

[19] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network struc-

ture, dynamics, and function using networkx. (1 2008).

[20] JordanHenkel, GouthamRamakrishnan, ZiWang, AwsAlbarghouthi, Somesh Jha,

and Thomas Reps. 2022. Semantic Robustness of Models of Source Code. In 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE. https://doi.org/10.1109/saner53432.2022.00070

[21] Micha Horlboge, Erwin Quiring, Roland Meyer, and Konrad Rieck. 2022.

I still know it’s you! On Challenges in Anonymizing Source Code.

arXiv:2208.12553 [cs.CR]

[22] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin

de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.

Parameter-Efficient Transfer Learning for NLP. arXiv:1902.00751 [cs.LG]

[23] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large

Language Models. arXiv:2106.09685 [cs.CL]

[24] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fa-

had Shahbaz Khan, and Mubarak Shah. 2022. Transformers in Vision: A Sur-

vey. ACM Comput. Surv. 54, 10s, Article 200 (sep 2022), 41 pages. https:

//doi.org/10.1145/3505244

[25] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A

Scalable Approach for Vulnerable Code Clone Discovery. In 2017 IEEE Symposium
on Security and Privacy (SP). 595–614. https://doi.org/10.1109/SP.2017.62

[26] Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with

Graph Convolutional Networks. CoRR abs/1609.02907 (2016). arXiv:1609.02907

http://arxiv.org/abs/1609.02907

[27] Guillaume Lample, Miguel Ballesteros, Kazuya Kawakami, Sandeep Subramanian,

and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In

Proc. NAACL-HLT.
[28] Yaoxian Li, Shiyi Qi, Cuiyun Gao, Yun Peng, David Lo, Zenglin Xu, and Michael R.

Lyu. 2022. A Closer Look into Transformer-Based Code Intelligence Through

Code Transformation: Challenges and Opportunities. https://doi.org/10.48550/

ARXIV.2207.04285

[29] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2017. Gated

Graph Sequence Neural Networks. arXiv:1511.05493 [cs.LG]

[30] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, Sujuan

Wang, and Jialai Wang. 2018. SySeVR: A Framework for Using Deep Learning to

Detect Software Vulnerabilities. CoRR abs/1807.06756 (2018). arXiv:1807.06756

http://arxiv.org/abs/1807.06756

[31] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun

Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System

for Vulnerability Detection. CoRR abs/1801.01681 (2018). arXiv:1801.01681

http://arxiv.org/abs/1801.01681

[32] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. 2021. A Survey of

Transformers. arXiv:2106.04554 [cs.LG]

[33] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2021. Multi-Task Learning Based

Pre-Trained Language Model for Code Completion. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering (Virtual

Event, Australia) (ASE ’20). Association for Computing Machinery, New York,

NY, USA, 473–485. https://doi.org/10.1145/3324884.3416591

[34] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A

Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs.CL]

[35] Scott Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model

Predictions. arXiv:1705.07874 [cs.AI]

[36] Judea Pearl. 2009. Causality (2 ed.). Cambridge University Press. https://doi.org/

10.1017/CBO9780511803161

[37] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[38] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.

2020. Unsupervised Translation of Programming Languages. In Proceedings
of the 34th International Conference on Neural Information Processing Systems
(Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook, NY, USA,

Article 1730, 11 pages.

[39] Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton, Tomo Lazovich, Jacob A. Harer,

Onur Ozdemir, Paul M. Ellingwood, and Marc W. McConley. 2018. Automated

Vulnerability Detection in Source Code Using Deep Representation Learning.

CoRR abs/1807.04320 (2018). arXiv:1807.04320 http://arxiv.org/abs/1807.04320

[40] Benjamin Sanchez-Lengeling, Jennifer Wei, Brian Lee, Emily Reif, Peter Wang,

Wesley Qian, Kevin McCloskey, Lucy Colwell, and Alexander Wiltschko. 2020.

Evaluating Attribution for Graph Neural Networks. In Advances in Neural Infor-
mation Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,

and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 5898–5910. https://proceedings.

neurips.cc/paper/2020/file/417fbbf2e9d5a28a855a11894b2e795a-Paper.pdf

[41] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from

deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618–626.

[42] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning Impor-

tant Features Through Propagating Activation Differences. CoRR abs/1704.02685

(2017). arXiv:1704.02685 http://arxiv.org/abs/1704.02685

[43] Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan,

Gaoyuan Zhang, and Una-May O’Reilly. 2021. Generating Adversarial Com-

puter Programs using Optimized Obfuscations. In International Conference on
Learning Representations. https://openreview.net/forum?id=PH5PH9ZO_4

https://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1711.00740
https://doi.org/10.1109/ASE51524.2021.9678706
https://doi.org/10.1109/ASE51524.2021.9678706
https://arxiv.org/abs/2010.09470
https://arxiv.org/abs/2010.09470
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969
https://arxiv.org/abs/1806.07336
http://arxiv.org/abs/1806.07336
https://doi.org/10.1145/3436877
https://doi.org/10.1145/3436877
https://doi.org/10.1145/3533767.3534371
https://doi.org/10.1145/3533767.3534371
https://arxiv.org/abs/2207.02098
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3379597.3387501
https://doi.org/10.1145/3474369.3486866
https://doi.org/10.1109/EuroSP57164.2023.00038
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1109/saner53432.2022.00070
https://arxiv.org/abs/2208.12553
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://doi.org/10.1109/SP.2017.62
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.48550/ARXIV.2207.04285
https://doi.org/10.48550/ARXIV.2207.04285
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1807.06756
http://arxiv.org/abs/1807.06756
https://arxiv.org/abs/1801.01681
http://arxiv.org/abs/1801.01681
https://arxiv.org/abs/2106.04554
https://doi.org/10.1145/3324884.3416591
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1705.07874
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1017/CBO9780511803161
https://arxiv.org/abs/1807.04320
http://arxiv.org/abs/1807.04320
https://proceedings.neurips.cc/paper/2020/file/417fbbf2e9d5a28a855a11894b2e795a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/417fbbf2e9d5a28a855a11894b2e795a-Paper.pdf
https://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685
https://openreview.net/forum?id=PH5PH9ZO_4

AISec ’23, November 30, 2023, Copenhagen, Denmark Erik Imgrund, Tom Ganz, Martin Härterich, Lukas Pirch, Niklas Risse, and Konrad Rieck

[44] Yongduo Sui, XiangWang, JiancanWu,Min Lin, XiangnanHe, and Tat-Seng Chua.

2022. Causal Attention for Interpretable and Generalizable Graph Classification.

In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (Washington DC, USA) (KDD ’22). Association for Computing

Machinery, New York, NY, USA, 1696–1705. https://doi.org/10.1145/3534678.

3539366

[45] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.

IntelliCode Compose: Code Generation Using Transformer. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event, USA)

(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,

1433–1443. https://doi.org/10.1145/3368089.3417058

[46] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef

Pieprzyk, and Surya Nepal. 2022. Transformer-Based Language Models for

Software Vulnerability Detection. In Proceedings of the 38th Annual Computer
Security Applications Conference (Austin, TX, USA) (ACSAC ’22). Association for

Computing Machinery, New York, NY, USA, 481–496. https://doi.org/10.1145/

3564625.3567985

[47] Erico Tjoa and Cuntai Guan. 2019. A Survey on Explainable Artificial Intelligence

(XAI): Towards Medical XAI. CoRR abs/1907.07374 (2019). arXiv:1907.07374

http://arxiv.org/abs/1907.07374

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All

You Need. arXiv:1706.03762 [cs.CL]

[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Con-
ference on Learning Representations (2018). https://openreview.net/forum?id=

rJXMpikCZ

[50] H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, Y. Feng, L. Bian, and Z.

Wang. 2021. Combining Graph-Based Learning With Automated Data Collection

for Code Vulnerability Detection. IEEE Transactions on Information Forensics and
Security 16 (2021), 1943–1958. https://doi.org/10.1109/TIFS.2020.3044773

[51] Wenhua Wang, Yuqun Zhang, Zhengran Zeng, and Guandong Xu. 2020. TranS3̂:

A Transformer-based Framework for Unifying Code Summarization and Code

Search. arXiv:2003.03238 [cs.SE]

[52] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and

Steven CH Hoi. 2023. Codet5+: Open code large language models for code

understanding and generation. arXiv preprint arXiv:2305.07922 (2023).
[53] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:

Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-

derstanding and Generation. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational

Linguistics, Online and Punta Cana, Dominican Republic, 8696–8708. https:

//doi.org/10.18653/v1/2021.emnlp-main.685

[54] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck.

2020. Evaluating Explanation Methods for Deep Learning in Security. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Genoa, Italy,

158–174. https://doi.org/10.1109/EuroSP48549.2020.00018

[55] Konrad Weiss and Christian Banse. 2022. A Language-Independent Analysis

Platform for Source Code. arXiv:2203.08424 [cs.CR]

[56] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe

Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,

Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,

and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language

Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational

Linguistics, Online, 38–45. https://www.aclweb.org/anthology/2020.emnlp-

demos.6

[57] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2019. A Comprehensive Survey on Graph Neural Networks. CoRR
abs/1901.00596 (2019). arXiv:1901.00596 http://arxiv.org/abs/1901.00596

[58] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. 2014. Modeling and Discovering

Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium on Security
and Privacy. 590–604. https://doi.org/10.1109/SP.2014.44

[59] Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural Attack for Pre-

Trained Models of Code. In Proceedings of the 44th International Conference on
Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Com-

puting Machinery, New York, NY, USA, 1482–1493. https://doi.org/10.1145/

3510003.3510146

[60] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial Examples for Models

of Code. Proc. ACM Program. Lang. 4, OOPSLA, Article 162 (nov 2020), 30 pages.
https://doi.org/10.1145/3428230

[61] Aiping Zhang, Liming Fang, Chunpeng Ge, Piji Li, and Zhe Liu. 2023. Efficient

transformer with code token learner for code clone detection. Journal of Systems
and Software 197 (2023), 111557. https://doi.org/10.1016/j.jss.2022.111557

[62] Huangzhao Zhang, Zhiyi Fu, Ge Li, Lei Ma, Zhehao Zhao, Hua’an Yang, Yizhe

Sun, Yang Liu, and Zhi Jin. 2022. Towards Robustness of Deep Program Process-

ing Models—Detection, Estimation, and Enhancement. ACM Trans. Softw. Eng.
Methodol. 31, 3, Article 50 (apr 2022), 40 pages. https://doi.org/10.1145/3511887

[63] Huangzhao Zhang, Zhuo Li, Ge Li, L. Ma, Yang Liu, and Zhi Jin. 2020. Generating

Adversarial Examples for Holding Robustness of Source Code Processing Models.

In AAAI Conference on Artificial Intelligence.
[64] Weining Zheng, Yuan Jiang, and Xiaohong Su. 2021. VulSPG: Vulnerability detec-

tion based on slice property graph representation learning. CoRR abs/2109.02527

(2021). arXiv:2109.02527 https://arxiv.org/abs/2109.02527

[65] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019.

Devign: Effective Vulnerability Identification by Learning Comprehensive Pro-

gram Semantics via Graph Neural Networks. CoRR abs/1909.03496 (2019).

arXiv:1909.03496 http://arxiv.org/abs/1909.03496

[66] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. 2021.

Interpreting Deep Learning-Based Vulnerability Detector Predictions Based on

Heuristic Searching. ACM Trans. Softw. Eng. Methodol. 30, 2, Article 23 (mar

2021), 31 pages. https://doi.org/10.1145/3429444

https://doi.org/10.1145/3534678.3539366
https://doi.org/10.1145/3534678.3539366
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3564625.3567985
https://doi.org/10.1145/3564625.3567985
https://arxiv.org/abs/1907.07374
http://arxiv.org/abs/1907.07374
https://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/TIFS.2020.3044773
https://arxiv.org/abs/2003.03238
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1109/EuroSP48549.2020.00018
https://arxiv.org/abs/2203.08424
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/3428230
https://doi.org/10.1016/j.jss.2022.111557
https://doi.org/10.1145/3511887
https://arxiv.org/abs/2109.02527
https://arxiv.org/abs/2109.02527
https://arxiv.org/abs/1909.03496
http://arxiv.org/abs/1909.03496
https://doi.org/10.1145/3429444

	Abstract
	1 Introduction
	2 Vulnerability Discovery
	2.1 Vulnerability Discovery
	2.2 Large Language Models
	2.3 Graph Neural Networks

	3 Methodology
	3.1 Problem Setting
	3.2 Evaluating Models
	3.3 Reducing Confounder

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Impact
	6 Related Work
	7 Conclusion
	References

