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Abstract—The source code of a program not only defines
its semantics but also contains subtle clues that can identify
its author. Several studies have shown that these clues can be
automatically extracted using machine learning and allow for
determining a program’s author among hundreds of program-
mers. This attribution poses a significant threat to developers
of anti-censorship and privacy-enhancing technologies, as they
become identifiable and may be prosecuted. An ideal protection
from this threat would be the anonymization of source code.
However, neither theoretical nor practical principles of such
an anonymization have been explored so far. In this paper, we
tackle this problem and develop a framework for reasoning about
code anonymization. We prove that the task of generating a k-
anonymous program—a program that cannot be attributed to
one of k authors—is not computable and thus a dead end for
research. As a remedy, we introduce a relaxed concept called
k-uncertainty, which enables us to measure the protection of
developers. Based on this concept, we empirically study candidate
techniques for anonymization, such as code normalization, coding
style imitation, and code obfuscation. We find that none of the
techniques provides sufficient protection when the attacker is
aware of the anonymization. While we introduce an approach
for removing remaining clues from the code, the main result of
our work is negative: Anonymization of source code is a hard
and open problem.

I. INTRODUCTION

The source code of a program provides a wealth of infor-
mation for analysis. It not only defines syntax and semantics,
but also contains clues suitable for identifying its author. These
clues result from the personal coding style and range from
obvious programming habits, such as the naming of variables
and functions, to subtle preferences in the usage of data types,
control structures, and API [1]. Thus, similar to writing style in
literature, a source code unnoticeably carries a fingerprint of its
developer. Several studies have shown that this coding style can
be automatically extracted using machine learning and allows
for identifying the author of a program among hundreds of
other developers [e.g., 2, 3, 4, 5, 6]. As an example, Abuhamad
et al. [7] report a detection accuracy of 96% on a collection
of source code from 1,600 developers.

While authorship attribution of source code resembles a
valuable tool for digital forensics, it also poses a threat to
developers of anti-censorship and privacy-enhancing technolo-
gies. Anonymous contributors to open-source projects, such
as Tor [8] and I2P [9], become identifiable through learning-
based attribution and might be prosecuted for their work in
repressive countries. Unfortunately, defenses against this threat

have received little attention so far. Even worse, prior work
has shown that strong obfuscation of source code is still not
sufficient to prevent an attribution [see 6, 7, 10], indicating the
challenge of protecting developers.

In this paper, we tackle this problem and study the
anonymization of source code from a theoretical and practical
perspective. To this end, we propose a framework for reasoning
about code anonymization and attribution. Based on this
framework, we introduce the concept of a k-anonymous
program, that is, a program that cannot be attributed to one
of k authors and hence is protected by an anonymity set. We
prove that changing a given source code, so that it becomes k-
anonymous in the general case is unfortunately not computable
and resembles an undecidable problem. Consequently, a general
method for code anonymization cannot exist and thus the pursuit
of strict k-anonymity is a dead end for research.

As a remedy, we derive a relaxed concept that we denote
as k-uncertainty. Instead of a program being perfectly indistin-
guishable between authors, we require that it is attributed to
k authors with similar confidence. While this concept cannot
overcome the undecidability of k-anonymity, it provides a
novel means for measuring the protection of developers. By
inspecting the confidence range of the k most similar authors in
an attribution, we can evaluate how well a developer is hidden
in an anonymity set. Based on this concept, we introduce a
numerical measure called uncertainty score that ranges from
0 (no protection) to 1 (k-anonymity) and can be used to
empirically assess how well a source code is protected. As a
result, it becomes possible to empirically compare techniques
for protecting the identity of developers.

Based on this numerical measure, we conduct a series
of experiments to analyze candidate techniques for code
anonymization. In particular, we consider code normalization,
coding style imitation [11] and code obfuscation [12, 13] as de-
fenses against popular attribution methods [6, 7] on a dataset of
30 developers. At first, all techniques hinder an attribution and
lead to high uncertainty scores. However, their performances
diminishes once the attacker becomes aware of the protection
and conducts adversarial training. For the strongest technique,
the popular obfuscator Tigress [12], the attribution still reaches
an accuracy up to 24%. To understand this result, we develop a
method for explaining the attributions and uncover clues in the
source code that remain after anonymization. This explanation
method complements our uncertainty score by indicating weak
spots in the realized protection.
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When iteratively removing indicative clues with our method,
we eventually bring the source code in our experiments to a
uncertainty score close to 1. However, this result should not
be interpreted as a defeat of the attribution methods. Rather,
it shows that anonymization can be achieved in a controlled
setup but stays an unsolved problem in the open world, where
indicative clues remain unknown and cannot be eliminated.
In summary, we thus argue that there is a need for novel
anonymization concepts and consider our work as the first
step towards formalizing and evaluating these approaches. In
summary, we thus make the follow contributions:

• Theoretical view on code anonymization. We propose a
framework for reasoning about code anonymization. This
framework enables us to prove that k-anonymity of code
cannot be reached in the general case.

• Practical view on code anonymization. We introduce a
concept for measuring anonymization in practice. Based
on this, we empirically compare protection techniques
under different adversaries.

• Insights on obstacles of code anonymization. Finally, we
develop an approach for explaining attribution methods
and identifying clues in source code remaining after an
anonymization attempt.

Roadmap. We review authorship attribution of source code
in Section II. Our framework for analyzing code anonymity is
introduced in Section III and we empirically evaluate different
techniques with it in Section IV. We analyze the deficits of
the techniques in Section V. Limitations and related work
are presented in Section VI and Section VII, respectively.
Section VIII finally concludes the paper.

II. SOURCE CODE ATTRIBUTION

We start with a short primer on authorship attribution of
source code. The objective of this task is to automatically
attribute a given source code to its author based on individual
properties of coding style [2]. As these properties are hard to
formally characterize and vary widely among developers, this
objective is typically achieved by extracting indicative features
from source code and constructing an attribution method
using machine learning. Consequently, existing approaches for
authorship attribution are best described based on the considered
features and the employed learning algorithms.

A. Features of Source Code

The features currently used in authorship attribution roughly
fall into three categories: layout, lexical, and syntactic features.
Each of these categories represents the source code from a
different view and thus enables access to different types of
stylistic patterns left by the authors in the code.

1) Layout features: The first type of features are derived
from the layout of the source code. Developers often have
specific preferences to format and layout their code, ranging
from different forms of indentation to the placement of brackets
and spacing between identifiers. Figure 1 shows a code snippet,
where different types of features are highlighted. Even in
this simple function a variety of layout features is visible,
such as the indentation width of 4, comments in C++ style,
and the placement of brackets. Consequently, any attempt

1 int gcd( int a, int b) {

2 if(b == 0)

3 return a;

4 // recursion

5 return gcd(b, a % b );

6 }

# Token int = 3
(Lexical)

Indentation width is 4
(Layout)

Leaves in AST
(Syntactic)

Figure 1: Code snippet in C with highlighted feature types.

to anonymize code needs to start at the layout and remove
individual formatting. Fortunately, this can be easily achieved
through common formatting tools, such as GNU indent and
clang-format, that automatically unify most layout features.

2) Lexical features: The second type of features is derived
from the lexical analysis of source code. The resulting features
comprise identifiers, keywords, literals, operators, and other
terminal symbols of the underlying grammar [14]. These
features implicitly encode the syntax and semantics of the
source code. For example, Figure 1 shows a lexical feature
that counts the occurrence of the token int. This reflects a
developer’s preference for this data type in relation to other
types in C, such as long or int32_t. Moreover, it reveals that
some form of integer processing takes place, giving clues about
the program semantics. Compared to the layout of source code,
lexical features cannot be unified easily, as they are implicitly
linked to syntax and semantics. As a result, their anonymization
is more challenging, as we show in Section IV.

3) Syntactic features: Finally, the syntax of source code
provides further features for characterizing the programming
habits of developers. In particular, the abstract syntax tree (AST)
is a common representation that allows extracting individual
patterns in types, arithmetics, logic, and control flow used
by developers [6, 15, 3]. These features range from single
language constructs to syntactic fragments, such as tree-like
structures in the AST. Figure 1 highlights two code locations
that correspond to leaves in the AST. Syntactic features are
hard to manipulate or even unify. Replacing a single keyword
in the source code may already lead to several modifications in
the AST. Similarly, adapting one node of the tree may require
multiple code modifications. The removal of coding style thus
becomes challenging and often intractable for these features,
as we also demonstrate in Section IV.

B. Attribution using Machine Learning

The described feature types provide a complex and diverse
view on source code that is difficult to interpret by a human
analyst. As a remedy, attribution methods for source code
rely on machine learning for automatically spotting stylistic
patterns for a particular author [e.g., 16, 7, 6, 15]. To this
end, the extracted features are first post-processed, for example,
with TF-IDF weighting and feature selection [7, 6]. Then,
a supervised learning algorithm is applied to infer stylistic
patterns characteristic for each author. The result is a multiclass
classifier that returns a prediction along with confidences for
all authors from the training data. The highest-ranked author
is typically selected for attribution.
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Previous work has studied several learning algorithms for
this attribution, such as support vector machines [16], random
forests [6], and deep neural networks [15, 7]. As we find
in our evaluation, the choice of learning algorithm can have
a considerable impact on anonymization. For example, deep
neural networks tend to overfit to particular authors during
attribution, while other learning algorithms, such as random
forests, provide a more generalized prediction.

III. CODE ANONYMITY

At a first glance, the anonymization of source code may
seem like a straightforward task: The defender needs to
manipulate her code such that an attribution method is tricked
into predicting the wrong author. There exist different ap-
proaches for constructing adversarial examples of source code
that can realize such misclassification for attribution methods
[e.g., 1, 11, 17]. However, anonymization is fundamentally
different from misclassification, as we illustrate in Figure 2
and demonstrate in the following.

Author A Author C

Author B Author D

p

p

A B C D

c

Confidences for p

(a) Misclassification

Author A Author C

Author B Author D

p

Y p̃

Anonymity Set

A B C D

c

Confidences for p̃

(b) Anonymization

Figure 2: Schematic comparison of misclassification and
anonymization in code authorship attribution.

The two plots schematically show a feature space that is
partitioned by an attribution method into regions associated
with authors. While an adversarial example of source code can
easily cause a misclassification, it does not provide reliable
protection. The true author is still identifiable due to the large
differences in the attribution confidences. By contrast, in the
right plot, the source code is moved near to the intersection
of the classification function so that several of the authors
become similarly likely. In this case, the author is protected
from identification by an anonymity set of other programmers
with similar attribution confidence.

A. Unified Notation

To the best of our knowledge, there exists no previous work
exploring the feasibility of code anonymization. To lay the
ground for this exploration, we thus first introduce a unified
notation for describing programs and their semantics as well
as methods for attribution and anonymization.

1) Programs and their semantics: We denote a program by
p ∈ P where P is the set of all valid programs. We differentiate
between the representation and semantics of a program p, where
the former defines its code, such as the source code, while
the latter describes its behavior [14]. If two programs pa and
pb have the same representation, that is, the source code is
identical, we write pa = pb. If two programs implement the
same semantics, that is, their output is identical for all inputs,
we write pa ≡ pb.

This differentiation enables us to investigate the relation
of representation and semantics: If we have pa = pb, it
directly follows that pa ≡ pb. The opposite, however, does
not hold. Rich programming languages, like C and C++,
enable implementing the same behavior in infinite many ways.
For example, identifiers can be changed, expressions can be
reformulated, and API functions can be substituted. Given a
program pa, there typically exist many pb ∈ P , such that
pa ≡ pb but pa 6= pb. As an example, Figure 3 shows four
programs that are semantically equivalent yet make use of
different identifiers, types, control flow and API functions. This
asymmetry between representation and semantics fuels the hope
that anonymizing code might be technically feasible.

2) Anonymization and attribution: To further explore the
idea of code anonymity, we introduce notation for attribution
and anonymization methods. In particular, to identify the author
of a given program, we define a generic attribution method

A : P → (0, 1)n, p 7→ c = (c1, ..., cn) (1)

that maps a program p to a vector c of n confidence values
c1, ..., cn, each associated with the confidence for one of n
possible authors. Without loss of generality, we assume that A
is a deterministic function and attains a performance at least
as good as random guessing.

In practice, attribution methods typically return the author
associated with maximum confidence, that is, argmaxA(p).
However, all current approaches for learning-based attribution
provide a measure of confidence, such as the class probabilities
returned by a random forest or a neural network [6, 7, 15].
Consequently, they all fit our generic definition of A. As an
example, in Figure 2(a) the attribution method A returns the
confidence vector A(p̄) = (0.6, 0.7, 0.1, 0.1).

As antagonist to the attribution method in our analysis, we
introduce a generic anonymization method

Y : P → P, p 7→ p̃ with p ≡ p̃ (2)

where the anonymized program p̃ is semantically equivalent to
p but possess properties that obstruct the attribution. Without
loss of generality, we assume that the anonymization remains
in the set P of valid programs. For example, P could be
defined as all programs that solve a particular task, and thus
any semantic-preserving transformation remains within this
set. In Figure 2(b), the anonymization method Y changes the
attribution, so that we have A(Y(p)) = (0.25, 0.25, 0.25, 0.25).

Note that we do not explicitly model the feature types
and learning algorithms within A or the code transformations
performed by Y at this point. The reason is that in a realistic
scenario, we are typically not aware of the employed attribution
method and thus an analysis of the underlying feature space
and the impact of code transformations on the features cannot
be anticipated by the defender.
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/* Vanilla version */

int gcd(int a, int b) {

while (b != 0) {
int tmp = b;
b = a % b;
a = tmp;

}

return a;
}

(a) Variant 1

typedef int num;

num gcd(num n, num m) {
loop:
if (n > m)

n = n - m;
else if (n < m)

m = m - n;
else

return n;
goto loop;

}

(b) Variant 2

#include <stdint.h>

int32_t gcd(int32_t x,
int32_t y) {

if (y == 0)
return x;

int32_t z =
x - x / y * y;

return gcd(y, z);
}

(c) Variant 3

#include <math.h>

int gcd(int a, int b) {
long c;

for(c = 0; b > 0;
c = !(a = c)) {
c = c + b;
b = fmodl(a,b);

}
return a;

}

(d) Variant 4

Figure 3: Programs implementing the Euclidean algorithm in
C. The programs are semantically equivalent but make use of
different identifiers, types, arithmetics, and control flow.

B. Modeling Anonymity

Equipped with a unified notation, we are ready to formally
model the anonymity of source code. For this purpose, we
build on the classic concept of k-anonymity proposed by
Sweeney [18] and expand it to authorship attribution. As we
see in the following, even this simple concept with known
weaknesses is already hard to realize on source code.

Definition 1 (k-anonymity) Given an attribution method A,
a program p is k-anonymous, if the attribution confidence
ct of the true author is identical to the confidence values of
at least k − 1 other authors. That is, for A(p) = c holds
ct = ci = . . . = ci+k−1 and argmaxA(p) is not unique.

For ease of presentation, we reference the k − 1 authors in
sequential order from i to i+k−1, although their indices may be
arbitrary distributed in the vector c. This definition implies that
for a k-anonymous program, the true author is indistinguishable
from at least k − 1 other authors and thus remains hidden in
an anonymity set of size k. Hence, an anonymization method
realizing k-anonymity transforms a given program, so that it
resides at the exact intersection of the classification function
for k authors in the feature space, as shown in Figure 2.

In practice, however, the defender can only speculate about
the capabilities of the attacker and typically has no knowledge
of the employed attribution method. To address this scenario,
we introduce a more general type of k-anonymity that provides
universal protection from authorship attribution.

Definition 2 (Universal k-anonymity) A program p is uni-
versal k-anonymous, if it is k-anonymous for any possible
attribution method A.

Although Definition 2 may seem like a reasonable start for
designing robust methods for code anonymization, it already
reaches the general limits of computability.

Theorem 1 Given a program p, the problem of transforming
p using an anonymization method Y so that Y(p) is universal
k-anonymous is incomputable (undecidable).

Proof: We reduce the problem of program equivalence,
which is known to be undecidable [19], to the task of creating
universal k-anonymity. Let pa and pb be two programs written
by developers a and b with pa 6= pb. Furthermore, let Y be an
anonymization method whose output is universal k-anonymous.
Then, the programs are semantically equivalent if and only if
their anonymization yields the same representation, that is,

Y(pa) = Y(pb) ⇐⇒ pa ≡ pb. (3)

To understand this reduction, let us suppose the programs
are semantically equivalent. Then, as long as Y(pa) and Y(pb)
are not identical, there always exists an attribution method Aδ
that can differentiate the developers. This Aδ can be constructed
as follows: We describe the difference between the anonymized
programs as δ = Y(pa) \Y(pb), where we assume that δ
is not empty. As the programs are semantically equivalent,
the difference δ can only result from the coding style of the
developers. Thus, we can define Aδ as

Aδ(p) =

{
(1, 0) if δ is in p,
(0, 1) otherwise.

(4)

Since Aδ can be constructed for any difference δ, the method Y
is forced to normalize the programs to the same representation,
such that we have Y(pa) = Y(pb).

If the programs are not semantically equivalent, their
anonymized representation can never be identical and we always
get Y(pa) 6= Y(pb). As a result, a method Y creating universal
k-anonymous programs would solve the undecidable problem
of program equivalence and thus is incomputable.

Theorem 1 fundamentally limits our ability to anonymize
code. Although k-anonymity is a rather weak concept that
suffers from well-known shortcomings [20, 21], we are not even
able to establish it on source code when the attribution method is
unknown. In view of the great flexibility of expressing semantics
in code, this is a surprising, negative result that unveils the
challenges of protecting developers from identification.

Takeaway message. The problem of creating universal
k-anonymity on source code is incomputable. Although
theoretically appealing, the development of approaches
to solve this problem for Turing-complete programming
languages is a dead end for research.

C. Relaxing Anonymity

As a consequence of this situation, we lift our requirements
and seek a weaker definition of code anonymity. To this end, we
propose a relaxed form of an anonymity set: Instead of requiring
k authors to receive an identical attribution, we demand that
their confidence values lie close to each other, that is, within an
interval of a small value ε. An anonymization method now needs
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to transform a program so that it is close to the intersection
of the classification function, yet it is not forced to create
identical programs. This relaxation is illustrated in the right
plot of Figure 2 where the near vicinity of the intersection is
indicated by a circle.

To model this concept, we consider the k-nearest neighbors
of an author t in the confidence vector c. In particular, we define
a permutation π of c that sorts the confidences according to their
distance from ct in ascending order. The k-nearest neighbors
can then be defined as a sequence Nt,k as follows

Nt,k = (cπ[1], cπ[2], . . . , cπ[k]) (5)

where the true author’s confidence is the first element and we
always have |cπ[i] − ct| ≤ |cπ[j] − ct| for any i < j. Based
on this relaxed form of an anonymity set, we introduce a new
concept for anonymity that we denote as k-uncertainty. This
concept is a generalization of k-anonymity from Definition 1,
where for ε = 0, both concepts are equivalent.

Definition 3 (k-Uncertainty) Given an attribution method A,
a program p is k-uncertain, if there exist at least k − 1 other
authors whose confidence values are ε-close to the true author.
That is, for A(p) = c holds max(Nt,k)−min(Nt,k) ≤ ε.

As k-uncertainty is a generalization of k-anonymity, it
naturally inherits the undecidability and also is incomputable
when the attribution method is unknown. Still, this concept
features an important difference when analyzing anonymization
methods in practice: Instead of enforcing a binary notion of
anonymization (k-anonymous or not), we obtain a continuous
level of protection (0 ≤ ε ≤ 1). As we see in the following, this
continuous representation enables us to construct a measure
for assessing the protection of developers in practice.

D. Measuring k-Uncertainty

The concept of k-uncertainty gives rise to a quantitative
measure of code anonymization. Instead of fixing ε in advance,
we can also determine the size of the interval around an author’s
k-nearest neighbors and thus gauge how well a program can
be attributed to that author. To achieve this goal, we define a
corresponding uncertainty score

uk(t, c) = 1− (max(Nt,k)−min(Nt,k)) (6)

that takes a confidence vector c as input and returns the
attribution uncertainty for the author t based on Definition 3.
If the author is clearly identifiable, this score returns 0,
whereas if she is perfectly hidden in an anonymity set, we
obtain 1. As an example, let us consider the confidence vector
c = (0.8, 0.1, 0.1, 0.0) with k = 3. We immediately see that
the first author stands out from the rest. This exposure is also
reflected in the uncertainty score u3(1, c) = 0.3. By contrast,
the second author cannot be clearly separated from the nearest
neighbors, yielding u3(2, c) = 0.9. As a result, we obtain a
simple numerical measure for assessing and comparing different
approaches to code anonymization.

Clearly, guaranteed anonymization against any attribution
method would be preferable, yet our results show that this is
technically infeasible. Therefore, we argue that the empirical
analysis of known anonymization and attribution methods
using the uncertainty score is the next feasible step towards
understanding and limiting the identification of developers.

E. Interpreting k-Uncertainty

The uncertainty score provides us with a numerical measure
of code anonymity. Yet, its interpretation is not straightforward,
as the score depends on the particular type of confidence values.
If the confidence corresponds to class probabilities, as in many
learning algorithms, we have

∑n
i=1 ci = 1 and can thus define

a heuristic for a threshold tε an appropriate ε should not exceed.

For class probabilities, the maximum confidence of an
author needs to be above 1

n to make a reliable attribution,
as otherwise the method would not be better than random
guessing. Consequently, we define tε = 1

n . This ensures that
the k authors of the anonymity set lie within an interval that is
smaller or equal to the confidence of random guessing. With
this heuristic, we can also interpret the uncertainty score and
reason that scores above 1− tε provide practical k-uncertainty
on class probabilities. We must emphasize, however, that this
heuristic is not generally applicable and must be carefully
considered for each type of confidence values.

IV. ANONYMIZATION UNDER TEST

Prepared with a practical definition of code anonymity, we
can now take a look at different approaches for protecting the
identity of developers. Our goal is to put these approaches to
the test and assess how well they can realize k-uncertainty
in different attribution scenarios. In particular, we study
a static scenario, where the adversary is unaware of the
anonymization (Section IV-C), and an adaptive scenario, where
she adapts the attribution to the anonymization (Section IV-D).
Before presenting these tests, however, we first introduce the
candidate techniques for anonymization (Section IV-A) and
our evaluation setup (Section IV-B).

A. Candidate Techniques

As there exist no approaches explicitly designed for
anonymizing source code, we focus on techniques that reduce
the presence of coding style. Specifically, we examine the
following three candidate techniques: code normalization, cod-
ing style imitation, and code obfuscation. All three techniques
differ in the amount and precision of their modifications. While
normalization and imitation modify targeted aspects of the
source code to unify coding style, obfuscation rewrites the
whole program, seemingly destroying all stylistic patterns.

1) Code normalization: The goal of normalization is to
modify code so that it conforms to a given policy or style guide.
Normalization is regularly employed in collaborative software
development, and larger projects typically define detailed
guidelines for the layout and structure of code [e.g., 22, 23, 24].
Inspired by the available style guidelines, we develop an own
code normalization that aims to unify as much of the coding
style as possible. In particular, we implement 13 normalization
rules for C source code. These rules unify the code layout,
replace the names of variables and functions, reduce the
variety of data types, and simplify control structures. All
transformations preserve the program semantics, so that the
normalization complies with our definition of an anonymization
method in Section III-B. Table V in Appendix B provides a
detailed listing of the implemented rules.
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Note that code normalization can be applied without access
to an attribution method and thus provides a generic approach
for reducing the presence of stylistic patterns in source code.

2) Coding style imitation: As second candidate, we consider
techniques that can imitate the coding style of developers. In
particular, we focus on approaches for creating adversarial
examples of source code [11, 25]. In contrast to normalization,
these attacks require access to an attribution method and allow
more target-oriented code modifications. Typically, adversarial
examples of source code are realized in a two-stage procedure:
First, a set of code transformations is defined, each imitating
a stylistic pattern, such as adding or removing preferences
for particular data types or control structures. Second, these
transformations are chained together using a search strategy
until a target classification is reached. This procedures also
preserves the semantics of the code.

There exist different variants for creating adversarial
examples on source code. For our tests, we focus on the
method by Quiring et al. [11], as it does not only induce
misclassifications of the attribution method, but also enables
lowering its confidence. While the objective of the method
technically remains misclassification, we conjecture that the
low confidence better protects the author and thus might serve
as a suitable anonymization approach.

3) Code obfuscation: As third candidate technique, we
consider the obfuscation of source code. Essentially, the goal
of this technique is to make code incomprehensible to humans
while preserving its semantics. Technically, this can be achieved
by encrypting constants, obscuring control flow, and even
virtualizing code execution. We refer the reader to the book
by Nagra and Collberg [26] for further details. Similar to
normalization, obfuscation is agnostic to the attribution method
and can be employed directly to any available code. For
our experiments, we make use of two common obfuscators,
Stunnix [13] and Tigress [12]. Stunnix obfuscates identifiers,
constants and literals. Still, the overall structure of the program
remains unchanged. Tigress is a more sophisticated tool and
considered state of the art in obfuscation. It supports several
advanced obfuscation techniques, such as function merging and
code virtualization.

Note, however, that obfuscation is intended to prevent an
understanding of code and not its attribution. Hence, obfuscators
only implicitly destroy the coding style of developers. As we
demonstrate in Section IV-D, this different objective plays an
key role when the adversary is aware of the obfuscation.

B. Evaluation Setup

Before testing the different candidate techniques, we intro-
duce our evaluation setup, which follows the common design
of experiments with code attribution [2].

1) Evaluation dataset: As basis for our evaluation, we
collect a dataset of source code in the language C. The code
has been written by 30 authors as part of the Google Code Jam
(GCJ) [27] competition between 2012 and 2014. All authors
solved the same 8 tasks in this competition, so that differences
in their solutions are caused by their individual coding style.
In total, our dataset contains 240 source code files (30 authors
solving 8 tasks). Similar datasets are commonly used in previous

work for evaluating attribution methods [see 6, 7]. However,
we restrict our dataset to plain C and do not consider C++, as
several features of this language obstruct code transformations,
such as dynamic binding1. Moreover, the considered obfuscator
Tigress also operates on plain C only.

Before extracting features from the collected source code,
we expand all macros and remove comments. Furthermore, we
use clang-format [28] to eliminate trivial layout differences
to focus only on lexical and syntactic features. For our
experiments, we use a grouped k-fold split to select seven
of the eight problems for training and reserve the last for
testing. This ensures that no characteristics of the tasks itself
influence the attribution.

2) Attribution methods: We employ two state-of-the-art
attribution methods to evaluate the effectiveness of the candidate
techniques: the method by Caliskan et al. [6] based on a random
forest and the method by Abuhamad et al. [7] which primarily
builds on a recurrent neural network. The approaches differ in
the extracted features, where Caliskan et al. employ a mixture
of lexical and syntactic features, while Abuhamad et al. use
lexical tokens only. As a result, we gain insights on how the
learning algorithms and the features impact an anonymization.
The authors of the methods report an accuracy of 98.04% and
97.65%, respectively, on similar datasets of source code from
the GCJ competition.

Table I: Attribution performance without any modifications.

Attribution method Accuracy Std. dev. Unc. Score

Caliskan et al. 0.688 0.110 0.840
Abuhamad et al. 0.754 0.069 0.261

Table I shows the performance of the two attribution
methods on our dataset. In contrast to the original publications,
the performance drops by 20-30% in our evaluation setup.
We carefully checked our implementation of the methods but
could not find any defects. We thus credit this performance
drop to two factors: First, we remove all comments and layout
features during pre-processing, which eliminates trivial clues
for discriminating developers. Second, we focus only on C code,
which is less diverse in comparison to C++. Consequently, less
information is available for the attribution and the classification
of coding style. Nonetheless, two out of three authors in
our dataset are still correctly attributed by the two methods,
demonstrating the need for code anonymization.

In addition, Table I shows our new uncertainty score for the
two attribution methods with k = 5. Although both methods
attain a similar performance, their uncertainty score differs
considerably. The approach of Caliskan et al. yields 0.84,
whereas the method of Abuhamad et al. reaches only 0.26,
indicating large differences in confidence between the authors
and a better identification. We examine these differences later
when evaluating the candidate techniques in Sections IV-C and
IV-D. Note that the uncertainty score changes only slightly
when we vary the neighborhood size k, and thus we keep
k = 5 for the remaining experiments.

1Some developers jokingly state that C++ is already obfuscated by design.
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Table II: Performance of candidate techniques in the static attribution scenario (regular training). The numbers in brackets show
the performance difference to the results on unmodified source code.

Candidate technique Attribution method Accuracy Std. dev. Uncertainty score

Code normalization Caliskan et al. 0.204 (–0.483) 0.033 (–0.077) 0.933 (+0.093)
Abuhamad et al. 0.146 (–0.608) 0.031 (–0.038) 0.858 (+0.597)

Coding style imitation Caliskan et al. 0.117 (–0.571) 0.062 (–0.048) 0.913 (+0.073)
Abuhamad et al. 0.050 (–0.704) 0.036 (–0.033) 0.807 (+0.547)

Obfuscation I (Tigress) Caliskan et al. 0.033 (–0.654) 0.000 (–0.110) 0.979 (+0.139)
Abuhamad et al. 0.033 (–0.721) 0.000 (–0.069) 0.966 (+0.704)

Obfuscation II (Stunnix) Caliskan et al. 0.371 (–0.317) 0.065 (–0.044) 0.911 (+0.070)
Abuhamad et al. 0.392 (–0.363) 0.092 (–0.023) 0.626 (+0.365)

3) Implementation details: We implement the code nor-
malization using LibTooling, a versatile library of the clang
frontend and LLVM compiler infrastructure [28]. For the
coding style imitation, we adopt the open-source framework
by Quiring et al. [11] and fit it to our evaluation setup. For
the code obfuscation, we employ Stunnix in version 4.7 and
Tigress in version 3.1. For Stunnix, we enable all options, while
for Tigress we focus on advanced features, such as virtualizing
functions, inserting random code, and obscuring API calls.
Table VI in Appendix C lists the used features in detail. Finally,
we ensure that both tools are given proper random seeds so
that randomized elements are different in each run.

Prior work [6, 7] has not specified the particular version of
Stunnix. We use the publicly available evaluation edition 4.7
of Stunnix that is presumably also used by other work. This
version does not provide manglers for identifiers, which may
lead to an overestimation of the attribution performance. As a
remedy, we re-implement an own MD5-mangler for identifiers
according to the manual of the developer version of Stunnix
that requires payment.

C. Static Attribution Scenario

In our first scenario, we consider a static attribution, where
the adversary is unaware of the employed anonymization
techniques and treats the modified code as regular programs.
For this purpose, we apply the considered techniques for
anonymization to the test set only and investigate their impact
on the accuracy and uncertainty of the attribution methods.
This setup reflects situations where the attacker overlooks the
presence of modified code, for example, when the coding style
is imitated, or simply fails to adapt to the anonymization.

1) Attribution performance: Figure 4 and Table II show the
performance of the attribution methods when the four candidate
techniques are employed. We observe a huge drop in accuracy
compared to the original results in Table I. Obfuscation I
(Tigress) has the largest impact on the attribution and transforms
the code, so that the accuracy drops by 65% and 72%,
respectively. The achieved attribution of the 30 developers is
no better than guessing. By contrast, Obfuscation II (Stunnix)
shows the weakest protection, yet the number of correctly
attributed authors is still halved in comparison to Table I.
As a result, code obfuscation leads to a notable number of
misclassifications in this scenario, reducing the utility of the
two attribution methods.

The code normalization and coding style imitation also
reduce the accuracy of the attribution by 48% to 70%. As
expected, the normalization has a lower impact than the
imitation, since it does not account for the particular attribution
method when unifying the coding style. For both techniques, we
also see a more pronounced difference between the approaches
by Caliskan et al. and Abuhamad et al. While the latter achieves
significantly better results on the unmodified dataset, now
the method by Caliskan et al. exhibits a higher accuracy.
The method takes into account syntactic features that are not
considered in the other approach. Consequently, it attains a
broader view on the code and thus is more robust.

2) Anonymization performance: We continue with the in-
vestigation of the anonymization performance of the techniques
under consideration. Table II shows the average uncertainty
score with k = 5, that is, an anonymity set of 5 authors.
Compared to the original results, there is a significant increase
of this measure, indicating better protection of the developers.
For the method by Caliskan et al., all values are now above 0.91,
while for the approach by Abuhamad et al. all but one score
reach over 0.80. The best performance is obtained for Tigress,
reaching an uncertainty scores of 0.96 for both attribution
methods. To interpret these values, we apply the heuristic
proposed in Section III-E. Since there are 30 authors in our
dataset, we have n = 30 and get tε = 1

30 . As a result, Tigress is
the only approach that reaches k-uncertainty in this experiment,
as we have 1− tε ≈ 0.96.
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Figure 4: Attribution accuracy in static scenario.
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Table III: Performance of anonymization techniques in the adaptive attribution scenario (adversarial training). The numbers in
brackets show the performance difference to the results on unmodified source code.

Candidate technique Attribution method Accuracy Std. dev. Uncertainty score

Code normalization Caliskan et al. 0.533 (–0.154) 0.090 (–0.020) 0.808 (–0.032)
Abuhamad et al. 0.529 (–0.225) 0.071 (+0.002) 0.492 (+0.231)

Coding style imitation Caliskan et al. 0.688 (±0.000) 0.110 (±0.000) 0.776 (–0.064)
Abuhamad et al. 0.563 (–0.192) 0.079 (+0.010) 0.458 (+0.197)

Obfuscation I (Tigress) Caliskan et al. 0.246 (–0.442) 0.087 (–0.023) 0.909 (+0.069)
Abuhamad et al. 0.121 (–0.633) 0.040 (–0.029) 0.869 (+0.608)

Obfuscation II (Stunnix) Caliskan et al. 0.625 (–0.063) 0.081 (–0.029) 0.811 (–0.029)
Abuhamad et al. 0.504 (–0.250) 0.060 (–0.009) 0.502 (+0.240)

Another interesting result of this experiment is that even
with a higher remaining accuracy, the uncertainty score for
the code normalization is better than for the imitation. While
the imitation of coding style more consistently causes misclas-
sifications, the confidence values often remain indicative of
the authors. In contrast, the normalization unifies the same
stylistic patterns regardless of the original author, thus creating
a tighter anonymity set. In view of the complex construction
of adversarial examples for imitation, normalizing the source
code is a reasonable defense that preserves a good level of
readability and reduces stylistic patterns.

Takeaway message. In the static attribution scenario,
all of the considered techniques significantly reduce the
performance of the attribution methods. In particular,
the obfuscator Tigress provides strong protection and
achieves practical k-uncertainty when the adversary does
not adapt to the anonymization.

D. Adaptive Attribution Scenario

In our second scenario, we consider an adaptive attribution.
In this more realistic setup, the adversary is aware of the
anonymization and takes steps to compensate for it during the
attribution of source code. As developing countermeasures for
each of the considered anonymization techniques is tedious, we
use a common trick from the area of adversarial machine learn-
ing: We employ two simple variants of adversarial training [29]
that enable the learning algorithms in the attribution methods
to extract clues from the modified source code of any possible
anonymization strategy.

For code normalization and coding style imitation, we
simply augment the training data with modified source code.
That is, we provide the original source code and a normalized
or imitated version of it for training, resulting in 14 code
samples per author. Since both candidate techniques are easily
overlooked by an attacker in practice, this augmentation ensures
that the attribution methods can capture stylistic patterns from
both, the original and the modified source code. As a result,
the methods are applicable to any source code, regardless of
whether the candidate techniques are used or not. To also
account for this situation in the performance evaluation, we
extend the test data by providing an original and a modified
version of the source code.

For code obfuscation, we pursue a different variant of
adversarial training. In this case, the attacker can easily spot
whether a source code has been modified, and hence we train
the attribution methods on obfuscated code only. Compared
to mixing original and modified code, this strategy forces the
attribution method to hunt for subtle clues in the obfuscated
code, despite randomized names, virtualized functions, and
obscured control flow.

1) Attribution performance: Figure 5 and Table III present
the attribution performance for the different techniques in
the adaptive scenario. A notable drop in performance is not
observable any more. Except for the obfuscator Tigress, the
accuracy of all candidate techniques remains over 50%, so that
every second author can be identified in the dataset. Tigress
reduces the accuracy to 24% and 12% for the two attribution
methods, respectively. However, the performance is notably
better than random guessing and now exposes the identity of
several developers in the dataset.

The impact of the adaptive attribution is particularly strong
for normalization and imitations. While for the static scenario
both techniques provide some protection, we now observe an
attribution between 52% and 68%, corresponding to almost
no defense. The weakness of the techniques is that they aim
to modify specific aspects of the source code, but do not
conduct broader transformations. These minor modifications
are compensated by the adversarial training, so that remaining
clues can still be uncovered.
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Figure 5: Attribution accuracy in the adaptive scenario.
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2) Anonymization performance: The weak protection in
the adaptive attribution is also reflected in the uncertainty
scores listed in Table III. Compared to the static scenario,
there is no clear tendency for the values to increase. In several
cases, the scores even decrease, suggesting that the authors are
now better identified than before anonymization. Based on our
heuristic, which requires an uncertainty score of 0.96 for 30
authors, none of the techniques provides adequate protection.
The obfuscator Tigress is again the best approach, but only
achieves an uncertainty score of 0.87 and 0.91 for the two
attribution methods, respectively. As a result, our simple variants
of adversarial training are already sufficient to lift the protection
provided by all candidate techniques.

We also observe another phenomenon: In several cases,
the uncertainty score increases for the method of Abuhamad
et al. while it decreases for the approach of Caliskan et al.
To investigate this divergence, we analyze the distribution of
uncertainty scores in detail. The corresponding histograms are
shown in Figure 6. The method of Caliskan et al. leads to a
one-sided distribution. Between 40% to 60% of the authors
cannot be identified well, resulting in an average uncertainty
score of 0.8. In contrast, the approach of Abuhamad et al.
induces a two-sided distribution, where some authors are well
protected at 1.0 and other are perfectly identifiable at 0.0. Thus,
on average the protection is much weaker with a mean of
roughly 0.5. We attribute this result to the tendency of the
neural network in the approach of Abuhamad et al. to overfit
and detect authors either with high confidence or not at all.

While adversarial training does not completely eliminate the
effect of the four candidate techniques, it weakens the attained
protection considerably. Given that this approach is just a simple
countermeasure and more advanced strategies can be conceived,
such as extracting features invariant to certain transformations,
we have to conclude that none of the techniques is a viable
solution for code anonymization if an adversary is aware of
their application. Unfortunately, we must assume that this is
regularly the case in practice, so that our experiments close
with another negative result.

Takeaway message. In the adaptive attribution scenario,
the attribution methods are weakly affected by the
considered techniques, and the majority of authors
remains identifiable. The obfuscator Tigress provides
the best protection, yet it fails to reach practical
k-uncertainty. Anonymity of source code cannot be
attained in this scenario.

V. ANONYMIZATION DEFICITS

Our empirical analysis demonstrates that the four candidate
techniques offer only limited protection in practice. So far,
however, we do not understand the reason for this deficit.
In this section, we take a closer look on this problem
and introduce two methods for explaining the decisions of
attribution methods (Section V-A). Based on these explanations,
we then uncover clues left by the techniques in the source code
(Section V-B). This analysis enables us to finally improve
Tigress, as the best approach in our experiments, and iteratively
remove remaining clues (Section V-C).
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Figure 6: Distribution of uncertainty scores for the adaptive
attribution. Top: Method of Caliskan et al. Bottom: Method of
Abuhamad et al.

A. Understanding Attribution

We follow two strategies to understand why an attribution
is still possible after a candidate technique has been applied to
a program. The resulting explanation methods are referred to
as feature highlighting and occlusion analysis.

1) Feature highlighting: A simple yet effective way to
explain an attribution is to trace back the decision of the
employed learning algorithm to individual features of the code.
To this end, we adjust the feature extraction of the attribution
methods and collect the code regions associated with each
feature. For AST-based lexical and syntactic features, these
regions can be easily determined using the Clang frontend.
Only a few features, such as the depth of the AST, have no
specific code region and are thus omitted.

Based on this mapping from features to code regions, we
apply explanation methods for machine learning to trace back
the attributions to code regions [30]. For example, for the
random forest classifier employed by Caliskan et al., we use
the method TreeInterpreter [31], which traverses the trees of
the forest, identifies active leaves and returns their contribution
to the prediction. We then color the code regions based on
this relevance. Figure 7 exemplifies the explanation for a code
snippet from our evaluation after applying Stunnix. The header
includes, declarations, and API usages are shaded in darker
color, indicating that they still provide clues for authorship
attribution. In fact, these patterns consistently occur for the
respective author in our evaluation.
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1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 (...)

5 int main() {

6 int zf6b4214bfd, zfad4c462ea ;

7 int zcfadb12be1, z078a83f597 ;

8 int zad2aac68b7 ;

9 int max ;

10 scanf("\x25\x64", &zfad4c462ea );

Figure 7: Example of feature highlighting for explaining an
attribution. Darker shading indicates more relevance.

2) Occlusion analysis: Feature highlighting is particularly
effective for explaining the attribution of normalized, imitated
or mildly obfuscated code. For strong obfuscation, however, it
reaches its limits. While we can highlight areas in the obfuscated
code generated by Tigress, these are incomprehensible by design
and impede an analysis of the attribution. To address this
problem, we introduce a second method that we denote as
occlusion analysis. This method is inspired from computer
vision, where classification decisions are often explained by
occluding regions of an image [32]. Similarly, we occlude
different areas of the source code and observe how the
obfuscated code is then attributed.

Algorithm 1 provides an overview of this approach. First,
we partition the unobfuscated code into segments S (line 2).
Then, we iteratively remove each segment s ∈ S from the
code, apply the obfuscation Y and perform the attribution A
(lines 4–8). After this step, the relevance Rs of the segment s
is given by the confidence difference to the original attribution
(line 7). We repeat this process, so that we obtain a relevance
map over all segments.

Algorithm 1 Explaining attributions with occlusions

Require: Program p, attribution A, anonymization Y , author t
1: c∗t ← A(Y(p))
2: S ← SEGMENTCODE(p) . Line splitting / program slicing
3: R← (0, . . . , 0) ∈ R|S| . Initialize relevance vector
4: for all s ∈ S do
5: ps ← OCCLUDESEGMENT(p, s)
6: cs ← A(Y(ps)) . Attribution w/o segment s
7: Rs ← (c∗t − cst ) . Relevance of segment s
8: end for

While the method is simple and can be applied to arbitrary
anonymization techniques, the crux is the definition of an
appropriate segmentation. In contrast to the pixels of an image,
we cannot simply remove arbitrary parts of a program without
affecting its syntax. To address this problem, we introduce
two complementary strategies: As the first strategy, we simply
split the source code along the textual lines. While this trivial
approach naturally leads to incorrect syntax, often the remaining
code is still valid and we can narrow down relevant regions
at the level of lines. As the second strategy, we employ
backward program slicing. To this end, we use the framework
Frama-C [33] which enables creating syntactically correct
program slices on C code. This strategy preserves the syntax
in all cases, yet the segments often become large, making an
identification of relevant regions difficult.

B. Identified Code Clues

With the help of the explanation methods, we investigate the
deficits of the candidate techniques. After manually analyzing
the highlighted code regions with both segmentation strategies,
we can identify four recurring groups of patterns that remain
after the application of the techniques.

1) String literals: The first group of patterns corresponds to
string literals. Code normalization and coding style imitation do
not modify these literals, as they aim at preserving the code’s
readability. Although Stunnix replaces strings with hexadecimal
representations, the encoded characters still remain the same
for all string occurrences. Therefore, a learning algorithm
can identify these literals and use them to find clues about
the developers. In contrast, Tigress takes care to not reveal
literals by dynamically generating strings at runtime. While
the characters themselves are not present, the code necessary
for their generation still leaves telltale signs. First, there is an
empty function stub for every obfuscated string in the modified
code, which signals the number of used strings to the attribution
method. Second, the length of the strings is implicitly reflected
in the size and operations of the generation routine. As a result,
even for Tigress, some subtle hints about string literals remain
accessible to the attribution methods.

2) Include directives: Another group of indicative patterns
is formed by #include directives of C code. These directives
reveal a developer’s preferences for certain functions and
libraries. The code normalization and the obfuscator Stunnix
do not touch these directives and thus expose these preferences
to the attribution methods, as also highlighted by the example
in Figure 7. The coding style imitation by Quiring et al. [11]
inserts and removes include directives to match the program-
ming habits of a developer. Nevertheless, headers required for
the implementation always remain present in the code. Finally,
Tigress “inlines” the headers by copying their content into the
source code. While this copying makes the resulting code hard
to understand for a human, the included content is no different
from the directive for a learning algorithm and thus still serves
as a valuable hint.

3) API Usage: API usage provides another set of patterns
that remains after anonymization. Automatically changing API
usage is a challenging task, since one must ensure that the
replacement is equivalent in functionality. Although the coding
style imitation contains some transformations to exchange
equivalent C functions, the majority of API calls remains
unchanged. The code normalization and Stunnix provide no
transformations for this kind of feature. Tigress calls the API
functions by their memory addresses, so that it can hide function
names in the source code. Nevertheless, an attribution method
can use the types and number of call parameters to narrow
down the particular API. In Appendix A, we provide a more
detailed analysis of this remaining feature.

4) Code structure: Finally, the program structure is often
preserved. With the exception of Tigress, the other techniques
retain the general organization of the source code. Although the
coding style imitation is able to rearrange C statements locally,
the overall structure of the code stays unchanged. As a result,
personal preferences to structure the program are available to
the attribution methods.
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Table IV: Performance of Tigress with eliminated clues in the adaptive attribution scenario (adversarial training). The numbers in
brackets show the performance difference to the results on unmodified code.

Candidate technique Attribution method Accuracy Std. dev. Uncertainty score

Obfuscation I (Tigress) Caliskan et al. 0.071 (–0.617) 0.052 (–0.058) 0.969 (+0.128)
Abuhamad et al. 0.058 (–0.696) 0.050 (–0.019) 0.938 (+0.677)

C. Eliminating Code Clues

Equipped with knowledge of indicative patterns in the
modified code, we are ready to refine the anonymization of
source code. For this improvement, we focus on the obfuscator
Tigress, as it provides the best protection in our experiments.

1) Code transformations: To eliminate the identified pat-
terns, we design a set of code transformations that addresses
the weak spots of Tigress. This development is repeated over
multiple iterations where we first apply new transformations
and then observe their impact on the attribution using the
explanation methods from Section V-A. This feedback loop
enables us to systematically identify and eliminate clues left in
the code, increasing the attained k-uncertainty.

In particular, we devise the following transformations: To
hide string literals, we remove empty function stubs inserted
by Tigress and pad all strings to a minimum length. In C,
this can be easily realized by adding a NULL byte to each
string followed by padding characters. Furthermore, we include
all headers from the C standard by default and add at least
one call to every API function used in the dataset. Finally,
for function pointers, we remove all information, except for
necessary argument and return types. This makes it complicated
to differentiate the called functions.

2) Results: Table IV shows the attribution performance
after applying these improvements and conducting another run
of adversarial training. We observe a significant decrease in
accuracy compared to Table I and Table III. The values are
close to guessing and the uncertainty scores are comparable to
the static scenario (see Table I). For the method of Caliskan
et al., the score reaches the threshold of 0.96, so that we
attain practical k-uncertainty according to the heuristic from
Section III-E. For the method of Abuhamad et al., we come
close to this threshold with an uncertainty value of 0.94.

This positive outcome may seem like the final defeat of the
two attribution methods. Unfortunately, this is a misinterpre-
tation of the conducted experiments. We only show that it is
possible to achieve k-uncertainty in a controlled environment
where the defender can systematically explore the attacker’s
capabilities for attribution. In practice, however, this is rarely
the case, and so we demonstrate the technical feasibility of
attaining k-uncertainty in an adaptive scenario but unfortunately
not its general realization.

Takeaway message. It is possible to attain k-uncertainty
by systematically identifying and eliminating indicative
clues in source code. However, this approach is only
tractable if the defender operates in a controlled setup
and has access to the attribution method, which is rarely
the case in practice.

VI. LIMITATIONS

With our theoretical and practical analysis, we shed light
on the challenges of anonymizing source code. Naturally, our
approach for tackling this problem also comes with limitations
that we discuss in the following.

1) Selection of techniques: For our experiments, we select
two attribution methods and four anonymization techniques.
Consequently, our results are mainly based on this particular
choice. However, a different selection likely would have only a
minor impact on the reported performance and our conclusions
due to the following reasons:

a) We consider two state-of-the-art attribution methods. While
other approaches would also be applicable [e.g., 3, 4, 34],
none of these is fundamentally different in design. All
methods extract layout, lexical, and syntactic features
for training a classifier. Since the two considered meth-
ods already substantially weaken the anonymization, we
conclude that adding more attribution methods to our
evaluation would not provide new insights, unless they
build on completely new attribution strategies.

b) For code anonymization, we consider common approaches
for reducing coding style and comprehension of source
code. With Tigress, we employ one of the most powerful
obfuscators available for C code [35, 12, 26]. Our analysis
in Section V demonstrates how this obfuscation can be
further improved through explanation methods to realize k-
uncertainty in a controlled environment. The four selected
techniques thus provide a broad view on current defenses
against authorship attribution.

2) Size and type of source code: We base our empirical
analysis on a dataset from the Google Code Jam competition.
The underlying C code is ideally suited for studying attribution
techniques, as several developers solve the exact same tasks,
and differences in their solutions result from coding style.
However, compared to prior work, we focus on a small
dataset with only 30 authors. The reason for this limitation
is that we restrict our experiments to plain C code, since
advanced transformations on C++ are challenging and not
supported by Tigress. Nonetheless, previous work has shown
that learning-based attribution methods scale well with the
number of authors [see 6, 7], so that stronger anonymity cannot
be expected. Note also that the number of considered authors
is defined by the attacker and not controllable by the defender.

Moreover, we focus on C code because it is widely used
in software development of libraries and operating systems.
Still, we note that interpreted languages, such as Python and
JavaScript, offer further strategies for anonymization, including
encrypting the entire code and unpacking it at runtime using the
interpreter. Yet, there exists a large series of research on unpack-
ing malicious code [36, 37] that is applicable and would reveal
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the original code. Therefore, investigating other languages and
types of execution—compilation vs. interpretation—unlikely
changes the overall result of our work.

3) Undecidability: The proposed concept of k-uncertainty
inherits a daunting property from k-anonymity: undecidability.
It is impossible to create an anonymization method that can
guarantee k-uncertainty for any possible attribution method and
value of ε. We argue, however, that k-uncertainty provides a
notable advantage that k-anonymity cannot offer. The concept
involves a tunable confidence range ε. By making this range a
measurable quantity, we create the uncertainty score that allows
us to compare existing methods—something that would not be
possible with k-anonymity. Moreover, k-uncertainty converges
to k-anonymity with decreasing values of ε, giving us a general
intuition on the attained protection level.

While guaranteed anonymity of source code would be
preferable and might be attainable in limited or controlled envi-
ronments, our main result is unfortunately negative. Nonetheless,
we believe that this negative outcome is a central insight that
advances privacy research on protecting developers in practice
by shaping directions for future research.

VII. RELATED WORK

Our work is the first to explore the problem of anonymizing
source code. For this investigation, however, we naturally
build on previous research from different areas, such as code
authorship attribution and data anonymization. In the following,
we briefly discuss these related research branches.

A. Code Authorship Attribution

1) Code stylometry: The starting point for our work has
been the remarkable progress in code stylometry, that is, the
automatic authorship attribution of source code. In recent years,
several methods have been developed that are able to almost
perfectly attribute single-author code to developers using dif-
ferent concepts of machine learning [e.g., 6, 7, 15, 38]. These
methods have been further extended to allow for attributing code
fragments developed by multiple authors [e.g., 4, 39, 3]. This
partial attribution, however, proves challenging and therefore
leads to lower detection rates. For this reason, we focus our
empirical analysis on attribution methods analyzing single-
author code. In this way, we evaluate techniques for protecting
code under a stronger adversary model.

2) Coding style imitation: Another branch of research has
explored the robustness of learning-based attribution methods.
In the first study by Simko et al. [1], manual modifications
have been used to mimic the style of developers. Following
work has then developed concepts for automatically create
adversarial examples of source code [11, 25, 17]. These
attacks differ in the employed code transformations and search
strategy. For example, Quiring et al. [11] and Liu et al. [25]
develop several code transformations that modify lexical and
syntactic features, such as converting for-loops to while-loops,
whereas the approach by Matyukhina et al. [17] targets only
layout features. For our evaluation, we focus on the attack
by Quiring et al. [11], as it has a higher evasion rate than the
method of Liu et al. [25] and allows changing various lexical
and syntactic features in C code.

3) Text stylometry: Finally, there is extensive work on
attributing authorship of natural language texts and imitat-
ing the style of writing. Examples of this research include
techniques for modelling and detecting patterns in writing
style [e.g., 40, 34, 41] as well as approaches for misleading an
attribution through writing style obfuscation [e.g., 42, 43, 44].
Our work shares inspiration from this work. Due to the
fundamentally different properties of natural language text
and source code, however, these approaches are not directly
applicable in our setting.

B. Data Anonymization

Another related area of research is the anonymization and
de-anonymization of data [e.g., 45, 20, 46, 18]. Early ideas
of this area originate from general data processing and tackle
the challenges of storing, analyzing, and exchanging privacy-
sensitive data, such as medical records.

1) Anonymity concepts: One of the first ideas form this
area is the concept of k-anonymity by Sweeney [18]. In this
concept, every quasi-identifier in a dataset needs to be hidden
in a group of at least k persons with the same identifier, called
the anonymity set. This set ensures that no individual can be
isolated through personal properties.

The concept of k-anonymity, however, is insufficient when
additional data is correlated with the anonymity set. This has
led to the development of `-diversity [20]. This concept requires
for every group of equal quasi-identifiers that at least ` different
sensitive attributes are also included. In this case, even if an
individual can be assigned to a certain equivalence class, the
attacker is not able to deduce further sensitive data about
this particular person. This concept was further improved by
t-closeness [21], which tackles the problem of information
disclosure through the different distributions of attributes in an
equivalence class and the overall data. This concept limits the
possible gain of knowledge by requiring a similar distribution
in both. Hence, an attacker is not able to learn more about a
specific individual than about the dataset.

Unfortunately, we conclude from our theoretical analysis
that `-diversity and t-closeness are not helpful for protecting
code, as already k-anonymity is incomputable on source code
if the attribution method is unknown.

2) Differential privacy: Finally, our work also relates to the
powerful concept of differential privacy [47]. In this concept,
privacy-sensitive data is not directly available to users but
provided through an interface (or post-processing step). By
adding carefully chosen noise to the answers of this interface,
it becomes impossible to tell whether an individual is present
in the data or not. This concept has recently gained popularity
as a strategy for improving the privacy of data in learning
models [e.g., 48, 49, 50, 51, 52] and also in the field of natural
language processing [e.g., 53, 54, 55, 56].

In natural language processing, the noise is usually not
added to the text itself, but to a vector representation of it
[53, 54, 55]. While this is an elegant approach for realizing
differential privacy, in our setting, this requires knowledge and
access to the feature representation used by the attacker. As the
concrete set of features is typically unknown to the defender
and not accessible, these approaches are not directly applicable
to protect developers from identification.
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VIII. CONCLUSION

Methods for authorship attribution of source code have
substantially improved in recent years. While first approaches
have suffered from low accuracy, recent techniques can precisely
pinpoint a single developer among hundreds of others. Defenses
against this progress have received little attention so far and
hence we provide the first analysis of code anonymization.
Theoretically, we reveal a strong asymmetry between attackers
and defenders, where the universal k-anonymity of programs
is generally undecidable. Practically, however, we provide a
framework for reasoning about and measuring anonymity using
the concept of k-uncertainty.

Although we can generate k-uncertainty in a controlled
setup, the main conclusion of our empirical analysis is negative:
We find that effective techniques for protecting the identity
of developers in practice are still lacking. Research on such
techniques is challenging, as the defender is naturally not aware
of all possible strategies for attribution, while the attacker
can easily compensate new anonymization methods through
adversarial training, as we demonstrate in our experiments.

In summary, we conclude that entirely new approaches to
anonymization are needed, possibly starting already in program
language design and software development. For example,
new program languages and environments could be designed
with anonymity in mind, so that stylistic patterns and telltale
clues are reduced during development, potentially creating a
unified mapping between semantically equivalent code and its
representation. Our work is a first step in this direction and
provides concepts for defining and measuring code anonymity
in such future settings.
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APPENDIX A
API HIDING OF TIGRESS

Tigress hides the usage of an API by determining the
addresses of the API functions at runtime. Still, the types
and number of parameters are specified, because the function
pointers must be typed according to the passed parameters
for every call. This is achieved by casting the pointers using
function declarations from the header files. Some declarations
include argument names and thus these are copied into the
corresponding casts. This makes it possible to differentiate
functions with the same types of parameters.

As an example, the functions abs and close require one
parameter of type int and return the same data type. This leads
to a function pointer of type int (*)(int). In the header files,
however, the parameter of abs is named __x, while for close
it is filedes. The corresponding casts in the obfuscated file are
therefore (int (*)(int __x)) and (int (*)(int filedes))
which are easily distinguishable. As a result, even for Tigress,
an attribution method can identify used library functions in this
case.
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APPENDIX B
NORMALIZATION RULES

Table V provides a detailed listing of the implemented
normalization rules for anonymization.

Table V: Overview of implemented normalization rules

Rule name Description

Renaming All variables, functions, and structures
are renamed to a generic version. For
example, all variables are numbered as
var_x with x being a number starting
at 0.

Types The used data types are mapped to
a specified subset to eliminate redun-
dant type names, such as long and
int_32. Note that this transformation
is platform-specific.

Switch2If switch statements are transformed to
a chain of if-else statements.

Comma Comma operators are largely elimi-
nated and replaced with a sequence of
statements containing the expressions.

CompoundAssign Compound assignments are replaced
with normal assignments and the spec-
ified binary operator, e. g. a += 2 is
transformed into a = a + 2.

IfElse If the last statement inside the body
of an if statement is for example a
return or break, the following code
is moved into an else to this if.

MainParams This rule enforces the use of two
parameters for the main function and
a return statement at its end.

Multidecl If multiple declarations are in a single
statement, the statement is split into
separate declaration statements.

Braces Braces around every body are enforced,
for example, for the bodies of all if
and for statements.

UnnecessaryReturn This rule removes return statements
in if bodies if all following code is in
the else clause and the function has
no return value.

VoidReturn This rule adds a return statement at
the end of every void function.

FlattenIf For nested if statements, this rule
removes inner clauses by combining
the conditions of the inner and outer
if. It inserts additional ifs for the
else parts.

Paren This rule removes unnecessary paren-
theses like in a = (b + c), simplify-
ing arithmetic expressions

APPENDIX C
USED TRANSFORMATIONS FOR TIGRESS

Table VI lists the used transformations and arguments for
obfuscation with Tigress in detail.

Table VI: Overview of used transformations and arguments for
source code obfuscation with Tigress

Transformation Arguments

InitEncodeExternal Functions=main
InitEncodeExternalSymbols=

<ext. functions>
InitEntropy InitEntropyKinds=vars

Functions=init_tigress
InitOpaque Functions=init_tigress

InitOpaqueStructs=env
RandomFuns RandomFunsName=SECRET

RandomFunsFunctionCount=3
RandomFunsCodeSize=20
RandomFunsLoopSize=5

EncodeLiterals Functions=
<all in file>,main_0,
/SECRET.*/

EncodeLiteralsKinds=string
EncodeLiteralsEncoderName=

stringEncoder
Merge MergeFlatten=false

MergeName=MERGED
Functions=

<w/o main>,main_0,
/SECRET.*/

Virtualize VirtualizeDispatch=switch
VirtualizeStackSize=48
VirtualizeOperands=mixed
VirtualizeMaxDuplicateOps=2
VirtualizeSuperOpsRatio=0.1
VirtualizeMaxMergeLength=3
Functions=MERGED,stringEncoder

EncodeLiterals Functions=
main,MERGED,stringEncoder

EncodeLiteralsKinds=integer
EncodeExternal Functions=MERGED

EncodeExternalSymbols=
<ext. functions>

CleanUp CleanUpKinds=*
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