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Abstract. The online shopping sector is continuously growing, generat-
ing a turnover of billions of dollars each year. Unfortunately, this growth in
popularity is not limited to regular customers: Organized crime targeting
online shops has considerably evolved in the past years, causing significant
financial losses to the merchants. As criminals often use similar strategies
among different merchants, sharing information about fraud patterns
could help mitigate the success of these malicious activities. In practice,
however, the sharing of data is difficult, since shops are often competitors
or have to follow strict privacy laws. In this paper, we propose a novel
method for fraud detection that allows merchants to exchange informa-
tion on recent fraud incidents without exposing customer data. To this
end, our method pseudonymizes orders on the client-side before sending
them to a central service for analysis. Although the service cannot access
individual features of these orders, it is able to infer fraudulent patterns
using machine learning techniques. We examine the capabilities of this
approach and measure its impact on the overall detection performance on
a dataset of more than 1.5 million orders from a large European online
fashion retailer.

1 Introduction

The electronic commerce sector (e-commerce) is rapidly growing world-wide,
offering a large variety of products which are delivered directly to the customers’
home. In order to stay competitive with traditional shops, online retailers try to
send out products as soon as possible after being purchased, thus leaving only
little time to check for fraudulent activity. Following this strategy, the online
merchant Amazon alone generated a sales revenue of about 177.87 billion dollars
in 2017 [34]. However, the great success of these shops and their high incomes also
attract cybercriminals that cause significant financial losses to the merchants.

The creativity of the cybercriminals is virtually unlimited and ranges from
individual fraudsters refusing to pay for products to highly organized cybercrimi-
nals. So called reshipping scams are, for instance, a common fraud scheme which
causes an estimated financial loss of 1.8 billion US dollars each year [14]. In
these scams, the fraudsters use stolen payment data and let the shop send the
products to middlemen who relabel the goods and forward them to the criminals.
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In consequence, it becomes rather impossible for law enforcement to catch these
cybercriminals due to the lack of any actual information about their identity.

As a reaction to the growing threat caused by cybercriminals, merchants have
started to rely on fraud detection systems which automatically scan incoming
orders for fraudulent patterns. According to a report published by LexisNexis [19],
these systems often combine multiple fraud detection techniques, such as identity
and address verification or device fingerprinting. Despite these efforts to automate
the detection process, manual reviews are often additionally necessary to verify
that an order is indeed malicious. Still, there remains a large number of undetected
fraud incidents. As fraudsters tend to use similar fraud patterns among various
merchants, an exchange of current fraud incidents between online retailers could
effectively reduce the number of successful fraud attempts. In practice, however,
this exchange of information is difficult because competitive merchants are often
unwilling to share their data and also privacy laws pose a big hurdle for sharing
customer data among different parties.

In this paper, we propose a novel approach that allows merchants to exchange
information on recent fraud incidents without exposing customer data to other
retailers. In particular, each merchant pseudonymizes incoming orders on the
client side before uploading them to a central analysis service. This service in turn
applies machine learning techniques to the pseudonymized data accumulated from
all participating online retailers. In this way, the analysis service does not have
access to orders in plaintext and each merchant cannot see data from the others.
The resulting detection method, however, is capable of uncovering patterns in
the pseudonymized data that may indicate global fraud and would have been
missed otherwise.

Our pseudonymization method is based on Bloom filters as proposed by Schnell
et al. [29]. We extend this data representation to improve the privacy of customers
and empirically evaluate the probability of de-pseudonymization attacks. Based
on these results, we calibrate the parameters of our pseudonymization method
such that a machine learning algorithm can find actual fraud patterns while still
providing a good protection of the underlying data.

We apply our method to a large data set consisting of more than 1.5 million
actual orders collected by a large European online retailer and evaluate several
learning methods on the pseudonymized data. We compare our results against a
baseline that the merchant obtains without the use of pseudonymization. Although
the detection performance decreases due to the information loss introduced by
the pseudonymization, significant fraud patterns still remain in the data which
can help to inform merchants about potential fraudulent activity.

In summary, we make the following contributions:

1. We present an approach that allows the sharing of data between differ-
ent merchants without directly exposing sensitive information about their
customers.

2. We determine the strength of the proposed pseudonymization method while
assuming a realistic attack scenario.
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3. We evaluate the detection performance of our approach on a large dataset
containing 1,840,582 actual orders and demonstrate its ability to extract
useful fraud patterns from the data despite the loss of information introduced
by the pseudonymization.

4. To foster future research in this area, we make our method publicly available
to the community1.

The remainder of this paper is structured as follows. Section 2 provides
some background information about the fraud ecosystem and common fraud
patterns. In Section 3 we define a threat model which allows us to design a
system for privacy-enhanced detection of online fraud. The resulting system is
evaluated in Section 4. We discuss the challenges and limitations that we have
faced throughout our research in Section 5 and discuss related work in Section 6.
Section 7 concludes this paper.

2 Background

Online retailers are nowadays facing a large variety of different types of fraud.
Due to convenience for the customers, it is not possible to simply enforce a strict
verification process before delivering the purchase. Instead, the merchant needs to
carefully weigh up the chance of losing a legitimate customer against the chance
of being scammed by a cybercriminal. This decision is far from being trivial
since fraudsters are continuously improving their patterns in order to remain
undetected. In the following, we briefly discuss three prevalent fraud patterns of
different complexity.

The so-called chargeback fraud [19,38] represents a simple, yet common kind
of fraud. A scammer purchases several products that are paid by credit card. After
receiving the purchased goods, the fraudster requests a chargeback from her bank,
thus getting the spent money refunded. This type of fraud understandably works
just once at each merchant. Consequently, professional fraud often additionally
involves identity theft where stolen credit card data or other personal information
of other people are used to commit fraud repeatedly. Similar fraud activities also
emerge in the context of bank transfers. For example, SEPA transfers can be
canceled within a few days as part of a chargeback fraud.

Another type of fraud involves the payment by invoice, a popular payment
method in some European countries. Normally, a customer purchases products
that are delivered together with the invoice. This allows for invoice fraud which
is similar to chargeback fraud in the sense that the payment is postponed to a
later time. However, compared to chargeback fraud, it poses the additional risk
to the retailer that no financial information about the customer is available—
not even the minimal guarantee of a valid solvent bank account. This further
lowers the threshold for committing fraud: while for chargeback fraud at least a
(possibly stolen) credit card number is required, for the invoice the retailer has

1 http://www.github.com/darp/abbo-tools
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Fig. 1: Overview of the different steps of a privacy-enhanced fraud detection. A
merchant (1) extracts features from an incoming order that are subsequently
(2) preprocessed and (3) pseudonymized. Next, the analysis service applies (3)
classification and (4) clustering methods to uncover fraudulent activities.

no interaction with the fraudster whatsoever. The fraudster obtains the products,
but is never paying the invoice.

A more involved group of fraudulent activities combining various scamming
patterns is known as re-shipping scams [14], commonly applied by professional
cybercriminals. The fraudsters purchase goods from merchants by using stolen
credit card data or benefit from deferred payment solutions like invoice. They
hire middlemen commonly referred to as drop points via job announcements in
newspapers or online portals. These drop points accept the packages and forward
them to the fraudsters. The fraudsters’ identity remains unknown while the
possibly unwitting middleman might be approached by law enforcement. These
middlemen are often used by multiple fraudsters to scam different merchants and
are active for less than a month.

The exchange of fraudulent orders among multiple vendors and the application
of a global classifier could effectively hinder fraudulent orders involving common
drop points, stolen identities or credit card numbers. Overall, these fraud patterns
highlight the need and benefit of a shared fraud detection that is discussed in
the remainder of this manuscript.

3 Methodology

In this section we develop the overall setting of a shared analysis service among
several merchants. We then derive a threat model and discuss the resulting
privacy risks. Based on this step, we finally design a pseudonymization method
to protect the customers’ privacy during fraud detection.

3.1 The Analysis Service

Each participating merchant pseudonymizes its incoming orders before uploading
them to the analysis service. A classification model trained on the pseudonymized
data returns a prediction score which describes the potential risk of a submitted
order. In contrast to a classifier solely trained on the data from a single retailer,
the proposed classifier has access to the orders from all participating merchants.
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In this way, it is capable to identify global fraud incidents that could be missed
by a single vendor. As consequence of this design, the analysis service does not
have access to data in plaintext and only the merchants can link reported fraud
predictions to the original orders. That is, no information about ordered goods
and customers are shared in clear with the analysis service.

Figure 1 summarizes the processing chain of the merchants and the analysis
service. The features are extracted and preprocessed for each incoming order,
pseudonymized and mapped to a vector space at the client side. Subsequently, the
analysis service performs classification and clustering to identify fraud incidents.
We discuss these steps in more detail in the following.

3.2 Features for Fraud Detection

To identify online fraud effectively, the classification model needs access to a set
of discriminating features. The participation of a diverse range of online retailers
also requires the definition of a meaningful subset of features that every retailer
can contribute to. Thus, we focus on a minimal set of features which on the one
hand are naturally available due to the purchase process and on the other hand
enable the classification model to discriminate fraudsters from normal orders:

Address data. Every online fraud needs to be delivered to a certain physical
address before the fraudster is able to resell the stolen goods and generate profit.
The drop points are often reused since it is difficult to organize a multitude of
delivery places without the help of a sophisticated organizational structure which
is often not available. By collecting address data from multiple merchants it
becomes easier to identify suspicious behavior for one particular address.

Cart items. The ultimate goal of the fraudster is to get goods for free which she
can easily resell. In most cases she will therefore focus on specific brands and types
of goods which have a good market value. This highly resaleable combination
of goods in correlation with fraud will emerge naturally in the data pool of the
analysis service and thus can be exploited by the classifier. We describe the
ordered goods as a list of unique article identifiers and their respective prices.

Iterations. Fraudsters try to optimize their shopping cart by repeatedly adding
or removing items until they can fool the checkout system and get the delivery.
This is the single point where they can receive feedback from the fraud detection
system and try to uncover the black box by exploiting common assumptions, for
instance that a lower basket size increases the chance to get through.

Solvency score. Online retailers usually include a solvency score in their assess-
ment of a customer. This score describes more or less accurately the probability
that a customer will default. In the context of fraud detection, this feature helps
to discriminate benign orders from fraud orders: If a customer has a good solvency
score she is most of the time an actual person with a positive shopping history
and is thus less likely to commit fraud.
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This minimal set of features allows the analysis service to build classification
models that balance out the amount of used features with the benefit of the
pooling effect.

3.3 Threat Model

Sharing this kind of data between several parties obviously raises serious privacy
and competition concerns. An order contains sensitive information about a
customer such as her name, address and purchased products. To derive a secure
pseudonymization method, we therefore need to define a threat model that
describes the involved parties and their capabilities.

Merchants. The analysis service is used by multiple, possibly competitive mer-
chants. A fraudulent merchant might thus try to abuse the analysis service to
access confidential information from other merchants, such as the amount and
type of commonly sold goods, the addresses of active customers and so on.

Hence, we design the analysis service such that the participating online
retailers do not need to trust each other. In particular, each merchant has only
access to its own uploaded data, that is, no retailer ever needs to have explicit
access to the pseudonymized data of other participating merchants. Instead, the
information of fraud incidents from other retailers is implicitly contained in the
classification model trained by the analysis service.

Analysis service. A fraudulent operator of the analysis service has access to the
data of all merchants, thus posing a serious risk to the confidentiality of the
data. We assume that the operator is not one of the participating retailers but
knows the names and addresses of some customers in the dataset. Using this
information, she tries to deduce the goods that a particular customer has bought
from one or several merchants.

In consequence, we have to ensure that the analysis service never has access
to the plain data but only to pseudonymized orders. Still, the possibility is given
that the operator of the analysis service attempts to break the pseudonymization
using her background knowledge about certain customers. Thus, we need to
strengthen our pseudonymization technique accordingly.

3.4 Pseudonymization

After discussing the utilized features and defining the threat model, we can
finally develop a suitable pseudonymization technique. This technique has to
fulfill certain requirements in our scenario. Most importantly, it should not be
possible to easily reconstruct the information stored within the pseudonymized
orders. At the same time, it should allow a machine learning algorithm to still
extract fraudulent patterns from the data. Moreover, the approach should be
capable of handling different data types as the discussion of the features in the
previous subsection highlights.
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Fig. 2: Instead of using the exact value of the numerical features, their values are
discretized by binning them.

Preprocessing the Data. Our proposed pseudonymization technique is based
on Bloom filters [1], which we describe afterwards. The conversion of an incoming
order into this data structure requires a preprocessing that can be divided into
two distinct steps.

First, non-string values are converted into a string representation. For numer-
ical features like the article price, this is done by simply binning their values. In
particular, the size of these bins is selected regarding to the value distribution
of the considered feature. Figure 2 depicts an example of this procedure for the
article price. The selection of the bin size affects both the detection performance
and the pseudonymization strength. By selecting a large bin size, more articles
get assigned to the same price. This makes it harder for an attacker to derive
whether the filter contains a particular article solely based on its price value.

In the second step, all strings are decomposed into smaller substrings before
being inserted into the Bloom filter. Overall, different types of decompositions
exist which can be applied.

– Word Decomposition. The order is split at the whitespaces and the resulting
elements are inserted into the Bloom filter. While the decomposition of orders
through this method is rather simple, it is not possible to match strings
whose spelling only slightly differ.

– N-Gram Decomposition. In contrast to the word decomposition, the extraction
of n-grams allows us to compensate for spelling mistakes and thus to decide
whether two Bloom filters contain similar strings [8].

– Entity Decomposition. This decomposition is similar to the word decompo-
sition, but additionally stores the information to which part of the order
a particular word belongs. This, for instance, allows determining whether
the shipping and billing address of an order differ—a pattern indicative for
fraudulent activity.

– Colored N-Grams Decomposition. Similar to the decomposition in entities,
colored n-grams store to which part of an order the extracted n-gram belongs.
Figure 1 shows an example for a colored 2-gram decomposition.

Bloom filters. After the preprocessing of an order, the resulting strings are
finally put into a Bloom filter. For each order, we initialize a separate Bloom
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Fig. 3: Two elements are inserted into the Bloom filter using three hash functions
(with a collision at the 4th bit).

filter. This probabilistic data structure enables storing large sets of elements
within a limited amount of memory while simultaneously allowing an efficient
comparison between different filters. At the same time, it does not allow an
attacker to recover the information stored inside the data structure without
background knowledge. Initially proposed for spell checking, Bloom Filters have
already been successfully applied in several privacy-sensitive fields including the
linkage of health records [11,21,26,29].

Figure 3 depicts the basic concept behind Bloom filters schematically. The
filter is a bit array of fixed length 𝑚 where all bits are initialized as 0s. To insert
an element 𝑥 into the filter, a predefined number of 𝑘 independent hash functions
ℎ𝑖(𝑥) are applied on the element. Each hash function maps the element to a
particular position in the filter where the corresponding bit is set to 1. Similarly,
it is possible to check whether the filter contains a particular element by applying
these hash functions to the element and checking whether the corresponding bits
are set to 1. If one of the bits is not set, the element has definitely not been
inserted into the filter. In contrast, a positive match may be a false positive if
the bits are set to 1 by other inserted elements.

These so-called collisions are usually an unwanted property of Bloom filters.
However, collisions are desirable in our case since they already thwart an attacker
from certainly reconstructing information stored within the filter. Nonetheless,
this mechanism on its own is not sufficient to protect sensitive data as our
evaluation in Section 4 underlines.

Hardening the Bloom filter. We examine several extensions of Bloom filters
to strengthen their security properties.

– Noise Insertion. Adding noise to the Bloom filter can help to protect the data
stored inside of it [11,21] but can also partially destroy important information.
We examine the effects of this approach for our application scenario by
randomly setting bits in the filter.

– Merging Filters. Instead of just setting random bits, it is also possible to
sample fake items from their respective distributions and add them to the
Bloom filter. While this approach is more complex, it also further lowers
the probability of successful frequency analysis attacks [16]. We implement a
similar approach by merging multiple filters into a single one before sending
it to the analysis service. Thus, an attacker has no possibility to assign a
specific feature, e.g. an article, to a particular customer.
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– Keyed Hash Functions. If an attacker has knowledge of the underlying distri-
butions of the dataset and exact parameters used to pseudonymize the data,
she can perform a dictionary attack and reconstruct the information stored
inside the filters. This kind of attack can be effectively thwarted by keyed
hash functions [28,29]. In our case, the retailers share a secret key which is
unknown to the operator of the analysis service, thus significantly improving
the protection of the data stored inside the filters.

With these extensions at hand, it should be possible to clearly lower the prob-
ability of a de-pseudonymization. However, these techniques can simultaneously
affect the detection performance of the classifier. We examine and discuss the
effects of these techniques in Section 4.2.

3.5 Learning-based Fraud Detection

In the last step, we apply machine learning techniques for automatically detecting
fraudulent patterns in the pseudonymized data. The usage of machine learning
relieves a fraud analysis from manually constructing detection rules. In particular,
we consider classification and clustering techniques. In the classification step,
a learning model distinguishes between fraud and non-fraud cases. Afterwards,
fraudulent patterns are extracted from the data by applying clustering techniques.
This allows a fraud analyst to interpret these patterns and to take further actions
if necessary.

Classification. The application of machine learning requires an appropriate vector
representation of each Bloom filter. To this end, we associate each bit of the
Bloom filter with a dimension in an 𝑚-dimensional vector space, where each
dimension is either 0 or 1 and 𝑚 corresponds to the length of the Bloom filter:

𝑥 ∈ R𝑚 = (𝑏1, 𝑏2, . . . , 𝑏𝑚) , 𝑏𝑖 = {0, 1} . (1)

This yields very sparse high-dimensional data on which machine learning tech-
niques can be applied. We examine the performance of Linear Support Vector

Machines [10] and Gradient Boosted Trees [7] on this representation.

Clustering. In the next step, we try to find fraudulent patterns within the
pseudonymized data by applying clustering methods such as 𝑘-means [9]. The
identified clusters are ranked according to their ratio between fraud and benign
samples. That is, clusters that contain many fraud incidents and preferably no
benign samples are ranked at the top.

We can then extract (pseudonymized) fraudulent patterns from the highest
ranked clusters. Figure 4 schematically visualizes an example for this process.
Each Bloom filter of a fraud case is represented as a row in the left image. Red
pixels represent set bits, black pixels unset bits. In addition, white horizontal
lines separate the different clusters from each other. This representation easily
uncovers fraudulent patterns as a unique combination of red vertical stripes
in the image. In practice, the analysis service can extract these patterns and
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send them to each online retailer. Since they have complete knowledge of the
underlying pseudonymization technique, they are able to map back the fraud
pattern to plaintext. Figure 4 shows an example on the right where an uncovered
combination of n-grams indicates fraudulent activity.

Fraud patterns Uncovered pattern at client-side

Fig. 4: Schematic visualization of the process to uncover fraud patterns on the
client-side.

4 Evaluation

A successful operation of the central analysis service rests on two key requirements:
First, we need to hinder a de-pseudonymization as good as possible. Second, we
should be able to apply machine learning techniques to detect fraudulent orders.
To evaluate whether we can balance these opposing requirements, we conduct
the following experiments:

1. Calibrating the data protection. We examine the strength of our implemented
pseudonymization method under the given threat model. Based on the results,
we preselect a range of parameters that ensure a good data protection.

2. Calibrating the detection performance. We pseudonymize a sample of the data
using the selected parameter ranges and train a classifier for each combination.
We pick the parameter combination that yields the best detection results.

3. Classification. We pseudonymize the complete dataset of orders and evaluate
the detection performance on this data. Subsequently, we compare the results
with the detection performance achieved on the unprotected data.

4. Clustering. Finally, we cluster the pseudonymized data and extract common
patterns of professional fraud from it. We then discuss how these patterns
can help merchants to identify fraud more quickly.

4.1 Evaluation Dataset

Our dataset consists of 1,840,582 orders including 14,179 fraud incidents from
2016 provided by Zalando, a large European online fashion retailer. The data
was carefully cleaned to ensure a high data quality. To discriminate between
benign and fraudulent orders, we consider the actual payment. We flag each
order as fraudulent that is not payed after three months. We have conducted our
experiments in close consultation with Zalando. In each step, we have carefully
followed German data privacy laws.
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4.2 Calibrating the Data Protection

We first examine the pseudonymization method described in Section 3.4 to prese-
lect a range of promising Bloom filter parameters that provide high pseudonymiza-
tion strength.

Attack Scenario. To adequately evaluate the protection introduced by the
proposed pseudonymization method, we consider the following attack scenario
according to the threat model from Section 3.3. The analysis service represents
the adversary and tries to reconstruct information stored within the Bloom filters.

Without background knowledge, such an attack is not possible. The adversary
needs to know the parameters that have been used to create the Bloom filters,
such as the type of hash functions. In addition, the service needs a list of possible
addresses or articles. Without this information, a Bloom filter simply appears
to the adversary as random bit sequence. Therefore, we grant the service full
knowledge of the underlying method and assume that it has collected a list of
customer addresses and possible articles, for example, by crawling the web. Its
objective is now to gain knowledge about the shopping behavior of the customers
in the dataset. In particular, the service wants to derive which goods a particular
customer has bought.

With the necessary background knowledge the attacker can create own Bloom
filters with the names and addresses of targeted customers and compare them
with the pseudonymized orders. To this end, the adversary uses the Jaccard

similarity [33] which is defined between two Bloom filters 𝐵1 and 𝐵2 as

𝐽(𝐵1, 𝐵2) = |𝐵1 ∩ 𝐵2|
|𝐵1 ∪ 𝐵2|

= |𝐵1 ∧ 𝐵2|
|𝐵1 ∨ 𝐵2|

. (2)

𝐵1 ∧ 𝐵2 represents the bitwise intersection, 𝐵1 ∨ 𝐵2 the respective union between
the two vectors. The attacker can now match two Bloom filters if their similarity
score is greater than a particular threshold. After having identified a particular
customer in one of the pseudonymized orders, the adversary can run a dictionary
attack in order to determine which goods have been purchased by this customer.

Results. For measuring the influence of different pseudonymization parameters,
we sample an artificial dataset consisting of 1,000 distinct orders. Using this data,
we evaluate the impact of several Bloom filter parameters on the pseudonymization
strength. The obtained results are averaged over 5 repetitions.

Decompositions. The results for different decompositions types are presented
in Figure 5a. The plot depicts the fraction of correctly re-identified customers
for different decomposition types depending on the Bloom filter length. For all
examined decompositions, the attacker is able to re-identify the majority of
customers even when a small Bloom filter size of 500 Bits is selected. Further
reducing the size of the filters increases the collision probability and in turn
also lowers the de-pseudonymization probability. However, the high number of
collisions destroys valuable patterns for the detection of fraud at the same time.
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Fig.5: Figure (a) and Figure (b) depict the impact of different decomposition
types and hardening mechanisms on the pseudonymization strength.

Overall, we find that the collision probability does not provide proper protection

of the sensitive data and we require further protection mechanisms. Moreover, the
selected decomposition type has only little impact on the de-pseudonymization
probability. Hence, we select two decomposition types that should allow deriving
the best detection performance, i.e., n-grams and colored n-grams. While both al-
low handling spelling mistakes, colored n-grams also allow distinguishing between
different parts of an order.

Hardening mechanisms. Since the collision probability does not provide sufficient
protection, we have to rely on the hardening extensions described in Section 3.4.
The results of their evaluation are depicted in Figure 5b. In this experiment,
we add 10% of noise to the Bloom filters and measure the impact on the de-
pseudonymization performance. Surprisingly, the addition of noise has almost no
effect on the success of the attacker. The reason for this is that the attacker has
knowledge about the name and address of a customer in our attack scenario. If
both are re-identified in a particular Bloom filter, the probability is very high
that the pseudonymized order indeed belongs to that customer—despite the
presence of noise.

In contrast to adding noise, the two other hardening mechanisms succeed in
protecting the customer data. If we merge 𝑘 orders during the pseudonymization
with 𝑘 = 3, the attacker is unable to re-identify the order of a particular
customer. However, if the merged order is identified as fraud, the merchant needs
to check which one of the 𝑘 orders actually contains fraud patterns. The hardening
mechanism of keyed hash functions also successfully thwarts de-pseudonymization
without the drawback of the merge method. In this case, the mechanism requires
that the key remains unknown to the attacker.

In summary, the adversary in our attack scenario can be effectively thwarted

when merging multiple orders or by using keyed hash functions. These two mecha-

nisms provide a good protection independent from the size of the Bloom filters. In
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the following, we thus examine the effects of both hardening mechanisms on the
detection performance using Bloom filter sizes between 1000 and 10,000 Bits.

4.3 Calibrating the Detection Performance

The parameters selected in the previous step ensure a good data protection.
It thus remains to calibrate our approach such that also a good detection of
fraudulent activity is possible—if at all.

Overall, we have 384 different parameter combinations to evaluate after the
preselection of parameters, such as the size of the Bloom filter, the regularisation
parameter of the learning method and the lengths of the n-grams. In order
to cope with this large number, we use only a small subset of the available
training data and perform the model selection on it. This subset consists of 11,145
samples including 5,591 fraud incidents. We train a linear SVM on the data and
measure its performance using the area under the ROC curve (AUC) [2]. We
bound the AUC at 1% false positives to favor models with low false-positive
rates. Having large false positive rates could otherwise lead to the rejection of
legitimate customers, thus causing even greater financial loss to the merchants.

Based on the results of these experiments, we select a Bloom filter size of

4000 bits and a colored 2-gram decomposition. Moreover, we choose a bin size of

10 and 1 for the article price and the solvency score, respectively.

4.4 Classification

We finally examine the change in detection performance on the full dataset. We
pseudonymize the dataset using the previously determined parameter values.
We then split the dataset into two distinct sets and compare the detection
performance obtained on the pseudonymized data with the original performance.
The results are presented in Figure 6a. The baseline provided by Zalando is
depicted in black whereas the results obtained on the pseudonymized data are
shown as colored lines.

Note, that all classifiers have been trained on the same set of features in order
to ensure comparability. Using keyed hash functions as hardening mechanism, we
achieve a detection performance of about 75% compared to the results obtained
by Zalando at 1% false positives. As can be seen from Figure 6a, this ratio
remains nearly constant, even for significantly lower false positive rates such as
0.1%. We credit the difference in detection performance compared to Zalando
to the information loss induced by the pseudonymization. While Zalando, for
instance, trains the learning algorithm based on the exact numerical values,
we lose information due to the binning of numerical features as described in
Section 3.4. Nonetheless, we can uncover a large fraction of the fraud cases
without access to the original orders, demonstrating that a central analysis
service is technically feasible.

We also evaluate the detection performance after merging the filters. In
particular, we randomly pick three Bloom filters and merge them into one. If at
least one of the merged filters has been labeled as fraud, the resulting Bloom filter
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(a) Classification results
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(b) Clustering results

Rank # Fraud # Benign Ratio

1 17 0 100.0%
2 31 0 100.0%
3 15 1 93.8%
4 357 41 89.7%
5 151 26 85.3%

Fig. 6: Classification results on 1,840,582 orders with a Bloom filter size of 4000
and two different hardening mechanisms. Each ROC curve shows the normalized
true positive rate by using the performance of the baseline classifier as reference.
Moreover, the table in Figure 6b presents the purity of the top-ranked clusters
obtained on a dataset of 11,145 orders.

is also considered to be malicious. We notice a significant drop in the detection
rate, thus achieving only about 30% of the original detection rate. We deduce
that merging the Bloom filters changes the underlying distributions drastically
and thus has a large impact on the detection rate.

In summary, we achieve a detection performance of about 75% compared to

the unprotected data while at the same time clearly enhancing the protection of
the underlying data. In the following, we evaluate whether it is possible to extract
fraudulent patterns from the data using clustering despite the information loss
introduced by the pseudonymization.

4.5 Clustering

We apply a 𝑘-means clustering to the dataset of 11,145 samples which has also
been used to perform the parameter selection as discussed in Section 4.3. In
particular, we test different values for 𝑘 and pick the one which yields the best
results, that is, a clustering where the top ranked clusters have the highest purity.
Table 6b shows the top ranked clusters obtained when selecting 𝑘 = 100.

We investigate these best-ranked clusters to determine whether they contain
schemes of organized cybercrime. By de-pseudonymizing the data at the merchant,
we find that the orders in the first three clusters are mainly grouped together
due to specific articles or addresses they share. However, after consultation with
Zalando, they can not be considered professional fraud and rather correspond to
simple chargeback scams.

By contrast, cluster 4 and 5 exhibit typical patterns of professional scam. In
particular, the forth cluster mainly contains orders of expensive clothes which
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are delivered to drop points in Berlin. Moreover, these orders show a high
iteration count, indicating that the fraudsters tried to optimize their shopping
cart. Similar patterns can also be found in the cluster 5 where the fraudsters
ordered rather high-priced accessories like watches or bags and let them send to
drop points in Cologne. It is worth noting that both clusters contain 41 and 26
presumably legitimate orders, respectively. Overall, the case study thus shows
that the extraction of fraud patterns from the pseudonymized data is possible,
however, it requires tuning to lower the fraction of legitimate orders in large
clusters.

5 Limitations

Our approach represents a first step towards a privacy-enhanced detection of
fraudulent activity in e-commerce. However, there still exist several challenges
and limitations which we discuss in the following, together with future research
directions.

Malicious collaborations. In our threat model we do not consider the collaboration
between a malicious merchant and a malicious analysis service. In this scenario,
the key for the pseudonymization could be leaked to the analysis service, thus
enabling its operator to run dictionary attacks on the Bloom filters. Fortunately,
the collaboration of multiple merchants or a malicious analysis service alone do
not pose a risk. It therefore remains future research to find extensions that also
protect the customer data in scenarios where a malicious merchant and service
collaborate.

Consistent data labeling. A consistent procedure for labeling the input data fed
to the machine learning algorithm is essential to achieve a good classification
performance. While this seems to be an obvious requirement, it is far from trivial
in practice. This is because various online retailers often have their own definition
of fraud and thus varying labeling procedures. In order to apply our approach in
practice, it would be necessary that the participating online retailers agree on a
common labeling scheme.

Data access. We only have access to the data of a single merchant to conduct
our experiments. In order to demonstrate that our approach is indeed capable
of identifying global fraud patterns, we thus require further data from other
merchants. Still, the obtained results indicate that the identification of fraud is
possible on pseudonymized data using our method and thus can help us acquire
a larger group of participating merchants.

Frequency analysis attacks. Several researchers have shown that Bloom filters are
prone to frequency analysis attacks [15–17]. Although these attacks pose a real
threat in practice, they require the adversary to have exact background knowledge
about the underlying distributions from which the features are drawn. While
this is a realistic assumption for publicly available information such as names or
addresses, it requires insider knowledge for other features like the solvency score.
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By adding noise to the filters, the risk of a successful attack can be further
reduced and should thus be negligible in our case. Nonetheless, measuring the
actual risk needs further research since it highly depends on the particular
application scenario and the knowledge available to the adversary.

6 Related Work

In the following, we discuss related work which contains research of mainly three
different disciplines. First, we discuss research that provides insights into the
underground ecosystem related to reshipping scams. Second, we describe papers
that deal with fraud and malware detection. Finally, we review related literature
which focusses on privacy-preserving technologies.

Underground Ecosystem. The first in-depth study on reshipping scams is presented
by Hao et al. [14] who have analyzed the log files from seven reshipping scam
operations that took place between 2010 and 2015. Their paper provides a detailed
overview of the inner workings of this underground economy and estimates the
overall financial loss caused by reshipping scams to be around 1.8 billion US
dollars per year. In addition, they have been able to identify several possible
ways how these criminal activities can be disrupted. However, the suggested
countermeasures need to be enforced by the shipping service companies, thus
requiring the online retailers to rely on these companies. In contrast, we focus on
defenses that can be directly applied by the merchants themselves.

Other research groups have examined fraudulent activity closely related
to reshipping scams. In particular, reshipping scams mostly imply identity
theft [3, 30, 35] and mule recruitment [12, 22]. A survey on hijacking of on-
line accounts for identity theft has been conducted by Shay et al. [30]. The
authors have interrogated 294 people about their experience with account hi-
jacking. Surprisingly, about 30.3% of the participants report that they have
experienced compromise attempts on their email or social network accounts at
least once. A similar study has been conducted by Bursztein et al. [3] but focusses
on manual account hijacking. While identity theft allows fraudsters to distribute
malware or spam using the stolen identities [18], it also poses a crucial part in
reshipping scams. Consequently, some countermeasures initially proposed for
spam or malware might also help to impede fraud in e-commerce.

Fraud detection in e-commerce. A large strain of research examines techniques
to efficiently detect credit card fraud [5,23]. Chan et al. [6] present a survey of
different techniques for detecting credit card fraud. Likewise, other researchers
have studied approaches to detect related fraud variants. In particular, Pandit
et al. [25] propose a fraud detection system based on a Markov Random Field

to discover fraud in online auctions. Their approach has been evaluated on a
data set containing more than 60,000 actual users from eBay. Another method
by Maranzato et al. [20] targets frauds against reputation systems in e-markets.
An orthogonal strategy to defend against online fraud is the application of
fingerprinting techniques like browser fingerprinting and device fingerprinting [4],
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which unfortunately raises serious privacy concerns [24]. The most similar method
to ours has been proposed by Preuveneers et al. [27]. The authors present a
system which provides fraud detection as a service to the merchants. However,
their approach does not consider data protection. Moreover, they use individual
detection rules for each merchant instead of a global classifier trained on the data
of several online retailers.

Privacy-preserving technologies. When processing personal data, it is particu-
larly important to ensure that the data is protected from unauthorized access.
Techniques to achieve a high protection level for sensitive patient data have been
widely studied in the field of medical databases [16,29,37]. In particular, Schnell
et al. [29] present an approach for privacy-preserving record linkage based on
Bloom filters. Personal identifiers are stored in Bloom filters which can then
be used to re-identify the database entry of a person within different databases
without revealing its identity. Several researchers have demonstrated attacks on
Bloom filters [15–17] using frequency analysis techniques. However, these attacks
require the attacker to have background knowledge on the underlying distribu-
tions. While this is a realistic assumptions for publicly available information such
as names or addresses, it requires insider knowledge for other features like the
solvency score.

In addition, various researchers have recently demonstrated several successful
information leakage attacks against machine learning models [13,32,36]. As a
result of these attacks, the adversary is able to deduce some potentially sensitive
information from the data that has been used to train the classifiers. In order to
fend off some of these attacks, Shokri and Shmatikov [31] propose a system to
jointly learn a neural network without exposing too much information of the local
datasets. However, since random weights from locally trained neural networks
are exchanged between the different parties, the exact privacy implications of
this approach are still unclear. A similar defense technique has been presented
by Wu et al. [39] to privately evaluate random forests and decision trees, but is
limited to two parties and thus not applicable in our scenario.

7 Conclusion

This paper takes a first step towards an earlier detection of fraudulent orders
committed against online retailers. As scammers often use similar strategies
among several merchants, an exchange of information about recent fraud schemes
between merchants could effectively impede the success of these scams. However,
merchants are often unwilling to share this data with competitors and, moreover,
have to follow strict privacy laws.

As a remedy, we propose an analysis service that allows multiple merchants
to upload incoming orders that are pseudonymized in advance. In this way, the
analysis service is able to extract global fraud patterns from the shared but
pseudonymized data. This enables the service to inform the merchants about
recent fraud schemes in a privacy-friendly way.
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We implement a pseudonymization technique based on Bloom filters and
evaluate its impact on the overall detection performance. To this end, we use
a large dataset of actual orders collected by a large European online fashion
retailer. In the pseudonymized setting we are able to spot 75% of the fraud
cases detected by the privacy-unaware analysis at the same false positive rate.
An additional clustering step further demonstrates that we are able to identify
common patterns of professional fraud.

Although our approach does not provide perfect results, we demonstrate that
balancing privacy and performance in fraud detection is technically feasible and
direct access to sensitive information is not strictly necessary. Our approach
is generic and can be extended using different pseudonymization techniques
and learning methods. As a consequence, we are optimistic that future work
can further narrow the gap between unprotected and privacy-enhanced fraud
detection.
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