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Abstract—Machine learning and digital watermarking are
independent research areas. Their methods, however, are vulner-
able to similar attacks if operated in an adversarial environment.
Recent research has thus started to bring both fields together by
introducing a unified view for black-box attacks and defenses
between learning and watermarking methods. In this paper,
we extend this work and examine a novel black-box attack
against digital watermarking based on concepts from adversarial
learning. With a set of marked images, we let a neural network
approximate the watermark detection and use this network to
remove the watermark. The attack does not require knowledge
of the watermarking scheme.

Index Terms—Digital Watermarking, Adversarial Examples

I. INTRODUCTION

Machine learning is nowadays a substantial part in many ap-
plications of compute science, ranging from intrusion detection
systems and spam filters to medical systems and autonomous
cars. The success of machine learning is rooted in its capability
to automatically infer patterns and relations from a large amount
of data. This inference, however, is usually not robust against
attacks and thus can be disrupted or deceived by an adversary.
This problem has motivated the field of adversarial machine
learning that is concerned with attacking and defending learning
methods [13, 19]. Numerous attacks and defenses have been
developed, e.g. adversarial examples that mislead a neural
network with unnoticeably small perturbations [5]. The research
field of digital watermarking also operates in a security-critical
environment, where an adversary seeks to identify or remove a
watermark embedded into a signal such as an image or audio
file. Again, various attacks and defenses have been examined,
such as the prominent Blind Newton Sensitivity Attack [7].

Although both fields use different methods to achieve their
goals, they have a surprisingly similar attack surface in a
black-box setting. An adversary, for instance, can exploit
the limited access to a classifier or watermark detector to
modify a target such that it is misclassified with the smallest
possible changes. Recent work has thus started to systematically
study the similarities of both fields by introducing a unified
notation of black-box attacks and defenses—together with three
case studies to practically demonstrate a possible transfer of
knowledge [20]. The authors follow the goal of combining
related research fields under a common category, Adversarial
Signal Processing [2], so that researchers can bundle existing
knowledge.
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In this paper, we continue with this effort and extend a case
study from Quiring et al. [20]. In particular, we examine a
new black-box attack mechanism from adversarial learning
against digital watermarking. We assume access to a set of
marked images, either from some data leakage or from an
available watermark detector that allows us to label new data
points. Next, we learn a substitute model that approximates
the watermark’s detection function. For this purpose, we use
a deep neural network that is capable to infer even highly-
nonlinear patterns. Finally, we compute a perturbation for an
image on this local model that also fools the original watermark
detector. This attack does not require a detailed knowledge of
the watermarking scheme. Furthermore, it shifts the black-box
to a white-box setting, thereby evading defenses that operate
around the decision boundary [e.g. 1, 14].

We empirically examine our novel attack against the wa-
termarking scheme Broken Arrows [11]. We train a fully
connected neural network to detect the watermark. Although
this neural network just approximates the watermark, it allows
us to remove the watermark in 100% of the images with an
average PSNR of 35.60 dB and 38.79 dB on our two test sets.
In summary, we demonstrate that concepts from adversarial
learning can be successfully applied in other domains of signal
processing and pose a threat to current watermarking schemes.

II. BACKGROUND

This section introduces the threat scenario in machine
learning and digital watermarking and discusses their unified
view that lays the ground for our attack in Section III.

A. Adversarial Machine Learning

Attacks against learning-based systems can be roughly
grouped into three categories: poisoning attacks, evasion
attacks, and model extraction. We focus on the latter two attacks,
as they have concrete counterparts in digital watermarking.

In the evasion attack scenario, the attacker tries to manipulate
the prediction of an already trained classifier by carefully
changing the characteristics of the input data. For instance,
an adversary may slightly perturb the pixels such that the
image is classified to the wrong class while a person does not
recognize the changes [21]. In the context of spam filtering, an
adversary can try to evade detection by omitting words from
spam emails indicative for unsolicited content [15]. Depending
on her knowledge, the adversary operates between a black-
box and white-box setting. In the former case, no information



about the learning method or its training data is available.
The adversary needs to work with the predicted classes of
the classifier solely [16, 18]. In the white-box setting, she has
more knowledge about the method or data and her chances of
a successful evasion increase [4]. With access to the training
data, for instance, the adversary is able to learn an own model
that reveals the most promising features for evasion [4].

In the model extraction scenario, the adversary reconstructs
the underlying learning model by sending specifically crafted
samples to the target system and analyzing the respective
output [16, 23]. Tramèr et al. [23], for example, reconstructed
various learning models from publicly available machine
learning services by analyzing the returned binary or numerical
function outputs. Such an attack can eventually serve as
preceding step for an evasion attack.

B. Digital Watermarking

Digital watermarks are frequently used for copyright pro-
tection or to verify the authenticity of digital media, like
images, music or videos. A robust 1-bit watermark is technically
a random pattern that is added to the signal such that the
embedding is imperceptible and inseparable, but detectable
by knowing the watermark key [9]. Similar to machine
learning, watermarking methods are also used in an adversarial
environment and thus should not only survive unintentional
changes like compression, but also targeted attacks. We focus
on the following two attack classes that correspond to black-box
evasion and model-extraction attacks [20].

In an oracle attack, an adversary exploits the access to a
watermark detector that decides on the presence of a watermark
in a given media sample [e.g. 7, 8]. This detector can be an
online platform that verifies the authenticity of images or
a media player that implements digital rights management.
The attacker iteratively changes the signal by analyzing the
respective binary responses until the watermark is not detected
anymore. The necessary changes are minimized to preserve
the signal. In the watermark estimation scenario, the adversary
aims at recovering the watermark [e.g. 6]. In this way, she can
embed or remove the watermark in a variety of new signals,
thus undermining the use case of achieving copyright protection
or authenticity.

C. Unified View

Digital watermarking and machine learning share a similar
black-box attack surface. We shortly summarize the recently
proposed unification of both fields and refer the reader to
Quiring et al. [20] for a detailed discussion.

To begin with, both fields use a similar data representation.
Learning methods typically operate in a so-called feature space
F where the features can be described as a vector x ∈ RN .
In the case of classification, a class label y gets assigned to
each vector. Similarly, watermarking operates in a media space
M which can be composed of pixels or audio samples. The
marked and unmarked signals represent the classes. The signal
can also be described as x ∈ RN . As a result, the feature and
media space can correspond to each other: F ∼=M.
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Fig. 1. An adversary tries to achieve a misclassification or to learn the
detection boundary with only limited information such as the binary decisions.
Internal calculations such as numerical function values are not accessible.

Moreover, a learning method such as a neural network infers
the functional dependencies from the training data to separate
the various data points. Internally, a prediction function F (x)
is learned that returns a score for a data point, e.g. its class
probability. Geometrically, F separates the vector space through
a decision boundary. In a black-box scenario, however, the
adversary will typically have access to a function f = O ◦ F
where O deduces the class label from the numerical output F .

In a similar way, watermarking methods divide M into
two separate subspaces for the marked and unmarked signals,
respectively. We denote an unmarked signal by x, its marked
counterpart by x̃, and the watermark key by w that defines
the watermark pattern. Again, an adversary will typically only
have access to a watermark detector’s decision function g that
is composed of the binary output O and a detection function
G(x) internally. In summary, we have a similar attack surface:

f : O ◦ F, g : O ◦G, (1)

with F : F 7−→ RM , G :M 7−→ RM , (2)

and O : RM 7−→ {−1,+1} . (3)

Figure 1 depicts the adversary’s situation. Note that the shape of
f ’s decision boundary needs to conform with the training data
while the boundary of watermarking schemes can be created
under more degree’s of freedom. Yet, once the boundaries are
defined, we observe the same attack surface in both fields:
(a) A decision boundary, which can be different, separates the
vector space into subspaces. (b) The adversary has only limited
access to the classifier’s/detector’s response.

As a result, black-box attacks are transferable between
machine learning and digital watermarking. As part of an
evasion/oracle attack, the attacker seeks to cross the decision
boundary from a—either given or iteratively queried—set of
input-output pairs. In a model extraction/watermark estimation
attack, the adversary tries to estimate the decision boundary.

In contrast to watermarking where evasive samples have
been directly computed from binary outputs so far [e.g., 7],
black-box attacks in adversarial learning are generally based
on the transferability-property: an evasive sample that fools
a substitute model—locally calculated by the attacker—will
probably mislead the original model as well [17, 18]. To this
end, the attacker adaptively collects a set of own training points,
learns a local model, and conducts a white-box attack with



this model. Interestingly, recent research has demonstrated that
such a black-box attack can even be stronger than a white-box
attack where the adversary has the original model. By using
the substitute model, an adversary can overcome implemented
defenses in the original model such as gradient masking which
would prevent a gradient descent [19]. Note that this substitute
model only needs to approximate the original model which is
already enough to conduct an attack [18]. The similar attack
surface motivates that such an attack is also possible against
watermarking. We discuss in the next section how the concept of
a substitute model—originally examined in adversarial machine
learning—can be used against watermarking schemes.

III. ATTACK BASED ON A SUBSTITUTE DETECTOR

In the following, we show a novel attack strategy against
watermarking schemes that has been originally developed to
attack image or malware classifiers. In a nutshell, the attack
is based on learning a substitute model that approximates the
watermark’s detection function G. Then, the adversary makes
use of this local model to remove or embed a watermark so
that this evasive signal also transfers to the original watermark
detector. Note that the learning and attacking phase require the
same watermark key. The motivation behind this attack is that,
first, no detailed knowledge about the watermarking scheme is
necessary, since the learning process infers the pattern. Second,
numerical outputs are usable instead of binary values—shifting
the black-box to a white-box scenario. Third, similar to machine
learning, the adversary may circumvent defenses applied on
the original detector. For instance, the monitoring of a margin
around the decision boundary to spot line searches [22] will
not work, because the attack operates on the local model and
does not need to work along the boundary.

Data Preparation. The attack requires a set of signals that are
marked with the same watermark key w as well as another set
of unmarked signals. Note that the adversary does not need to
have the unmarked counterpart of each marked signal. Instead
of feeding the signals into the learning process directly, each
signal is transformed to its frequency representation where the
low-frequency sub-bands are discarded. In this way, only the
coefficients where the watermark is usually present are used
and the learning process converges faster. We denote the high-
frequency coefficients of a signal with and without watermark
by z̃ or z, respectively.

Learning Phase. The next step consists of learning a substitute
model F̂ that approximates the detector (see Figure 2). For in-
stance, Broken Arrows starts by calculating the high-frequency
wavelet coefficients for a given input image. The security is
based on a subsequent projection to a secret 256-dimensional
subspace where 30 watermark patterns are defined. The closest
one is used for embedding and detection. We therefore consider
deep neural networks due to their capability to learn highly non-
linear dependencies which makes them promising candidates
to attack non-linear watermarking schemes such as Broken
Arrows. In this work, we use fully connected networks. F̂ (z)
maps an input to a 2-dimensional output y ∈ R2—in our case

the watermark’s presence and absence. Internally, the network
is composed of various layers and a final softmax layer:

F̂ (z) = softmax ◦ Fm ◦ Fm−1 ◦ . . . ◦ F1 (4)

where

yi = softmax(Zi) =
exp (Zi)

exp (Zw) + exp (Za)
i = w, a (5)

The output values of Fm—the last layer before the softmax—
are the so-called logits. In our case, we have two final logits
Zw (watermark presence) and Za (watermark absence). The
softmax layer converts both values into final probability outputs
yw and ya by ensuring yw + ya = 1 with yw, ya ∈ [0, 1].
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Fig. 2. A Fully Connected Neural Network acts as a substitute model for
a watermark detector, trained with the frequency coefficients of marked and
unmarked images.

Attack Phase. In the next step, the adversary performs a gradient
descent towards the target class. We focus on removing the
watermark from a marked signal in this work. The adversarial
learning field has explored various strategies to find adversarial
examples—outputs that have a particular misclassification with
the smallest possible changes. We reuse these strategies to find
an evasive sample1.

In general, the generation of adversarial examples can be
seen as an optimization problem:

minimize c · LF̂ (z̃ + δ) +D , (6)

where LF̂ measures the vicinity to the target class. For instance,
we may set LF̂ = yw and measure the network’s predicted
probability of watermark presence. In addition, D penalizes
the necessary perturbations. The parameter c represents the
trade-off between both optimization terms.

Previous work has shown that the choice of LF̂ has a
significant impact on attack performance. We slightly adapt
the state-of-the-art formulation from Carlini and Wagner that
uses the logits instead of the softmax outputs [5]:

LF̂ (z̃
′) = Zw(z̃

′)− Za(z̃
′) . (7)

During the gradient descent, this formulation keeps the relative
weight between both optimization terms in Eq. (6) more equal

1Note a subtle difference. In adversarial learning, the attack aims at fooling
the neural network, for instance, by finding weak spots. In our case, the attacks
uses the neural network as substitute to fool the watermark detector. As a
result, weak spots in the substitute model do not result in a successful attack
against the watermark detector.



than the probability values from the softmax layer do [5]. In
addition, we try two formulations to measure the changes:

D1 = ‖δ‖2 , (8)
D2 = ‖z̃ + δ‖2 . (9)

D1 is commonly used in adversarial learning and rewards
positions that are closer to the starting position. D2 is a novel
measure that exploits the frequency representation and penalizes
the increase of high-frequency coefficients.

We perform a gradient descent from an input signal z̃ until
the substitute model predicts the watermark’s absence with
high confidence. We found empirically that we often do not
get stuck into local minima by taking the sign of the gradient,
at the expense of more changes due to a non-optimal path.
Note that a high confidence is necessary, since the substitute
model approximates the detector. Thus, the neural network’s
decision and the detector’s decision may not match in a certain
transition interval. We finally exploit the oracle access to check
if the watermark is present and continue with the gradient
descent if necessary.

IV. EVALUATION

We examine the previously described attack in two steps.
First, we test that an adversary can learn a substitute model to
approximate the watermark detector. Second, we demonstrate
that this model can be used to remove the watermark from
images.

Experimental Setup. We use Broken Arrows from the second
“Break Our Watermarking System” (BOWS) competition [11],
as it represents an advanced, publicly available watermarking
scheme. The training and test set are drawn from different
sources to lower the probability of similar image content. We
work with the Raise Image Database [10] as training and
validation set. Images from the Dresden Image Database [12]
and another set of manually selected images serve as test set.
The latter set was drawn from standard images like Lena or
Barbara. These images are generally highly-textured and ensure
that we use an image set with meaningful content despite the
cropping process. All images were converted to grayscale,
cropped to a common size of 128× 128 with varying offsets,
and marked with the same watermark key. We excluded images
with a too weak watermark embedding2. The embedding PSNR
is adjusted to 43 dB. Our training set finally consists of 13,050
marked and 13,050 other unmarked images, and the validation
set of 5,593 images of each class. The test set from the Dresden
database has 19,489 images of each class, and the manually
selected set has 444 images of each class.

For the attack, we select 225 watermarked images from each
test set. We repeat the attack process for both distance measures
D1 and D2. We further vary the trade-off parameter c and the
gradient descent’s step size, and slightly change the starting
positions to mitigate local minima. For each image, we report

2We exclude images with a cos value less than 0.45 which Broken Arrows
internally computes.
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Fig. 3. Attack Evaluation. (a) the ROC curve to measure the model’s capability
to separate marked from unmarked images. (b) the PSNR as measure for the
achieved quality after removing the watermark.

the respective solution with the smallest changes. We measure
the number of successful watermark removals and the average
Peak Signal to Noise Ratio (PSNR) between the original marked
image and its adversarial counterpart. As a simple baseline, we
use a median denoising filter where we increase the window
size until the watermark is not detected anymore.

Substitute Model. Our final neural network architecture consists
of 40, 60, 40 neurons in the consecutive hidden layers.
Figure 3(a) depicts the ROC curve for both test sets with
yw as discrimination threshold. The y-axis shows the number
of correctly detected watermarks. With a simple cutoff value at
yw = 0.5, the network’s accuracy is 86.82% for the Dresden
Image Database images, and 75.45% for the manually selected
images. The difference in accuracy is explainable by the fact
that the cropped images from the Dresden Image Database
have smoother content than the manually selected set. Thus,
the watermark is embedded slightly stronger and its inference
is less disturbed by image content. In addition, we verified that
the substitute model does not learn to differentiate that more
noise means watermark presence. We marked each image from
the previously unmarked set with another watermark key with
no impact on the accuracy. Overall, the results highlight that
the network only learns an approximation of the watermark
pattern, which is enough for a subsequent attack.

Attack Evaluation. The adversary is able to make the watermark
undetectable in 100% of the images with the DNN-based and
baseline attack. Figure 3(b) presents the corresponding PSNR
values. Our DNN-based attack achieves an average PSNR of
35.60 dB with a standard deviation of 2.62 dB on the manually
selected set, and 38.79 dB (standard deviation: 3.44 dB) on
the Dresden Image Database images. The magnitude of these
PSNR values is comparable to reported results during the 2nd
BOWS contest [24]. Figure 4 gives an additional intuition
about the resulting image quality. The evasive images preserve
image details like edges. On the contrary, the denoising process
removes substantial details.

Comparing the distances from Eq. (8) and Eq. (9), we found
that D1 yields higher PSNR values in 80% of the manual



Original image Waterm. image DNN Attack Denoising

PSNR: 35.96 dB PSNR: 34.29 db

PSNR: 36.07 dB PSNR: 30.38 dB

Fig. 4. Comparison of the achieved quality for two adversarial samples
from the manually selected test set. The original watermarked image serves
as reference for the PSNR calculation. The DNN-based attack removes the
watermark while retaining image details, e.g. the face in the upper row.

test images and 53.78% of the Dresden images. However, D2

retains a considerable performance in particular cases where
D1 would lead to substantially smaller PSNR values. Thus,
both distances complement each other.

Discussion. Our attack demonstrates that an adversary with no
background information and a set of marked images is able to
apply concepts from adversarial learning to attack a watermark
detector successfully. While specialized attacks against Broken
Arrows [e.g. 3] yield higher PSNR values, we present a novel,
generic solution that attains a considerable attack performance
without any knowledge of the watermarking scheme. We
credit our attack performance to the learned sensitivity of
each frequency component with respect to the watermark.
Future work may improve the approximation quality or reduce
the number of training images by using data augmentation
techniques or adaptive relearning strategies.

V. CONCLUSION

This paper strives to narrow the gap between adversarial
machine learning and digital watermarking by extending a
previous case study from Quiring et al. [20]. We enhance the
experimental setup by using larger and less images for training,
an additional test set, less neurons, and a denoising baseline.
The attack only requires a set of marked images without their
unmarked counterpart. We revise the optimization problem to
generate evasive samples so that we accelerate their generation
and improve their quality.

Overall, we demonstrate that the attack strategy to learn
and exploit a substitute model from adversarial learning also
threatens digital watermarks. We are able to approximate the
watermarking scheme Broken Arrows with a fully connected
neural network. While this is only an approximation, we can
yet apply concepts to find evasive examples in machine learning
to remove the watermark from images. To motivate further
research in this direction, we make our implementation and
dataset publicly available3.

3The implementation and datasets are available under https://www.
tu-braunschweig.de/sec/research/data/mldw
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