Efficient and Flexible Discovery of
PHP Application Vulnerabilities

Michael Backes*T, Konrad Rieck?, Malte Skoruppa*, Ben Stock*, Fabian Yalmaguchii

*CISPA, Saarland University
Saarland Informatics Campus

tMax Planck Institute for Software Systems

Saarland Informatics Campus

Email: {backes, skoruppa, stock} @ cs.uni-saarland.de
tBraunschweig University of Technology
Email: {k.rieck, fyamaguchi}@tu-bs.de

Abstract—The Web today is a growing universe of pages and
applications teeming with interactive content. The security of
such applications is of the utmost importance, as exploits can
have a devastating impact on personal and economic levels.
The number one programming language in Web applications is
PHP, powering more than 80% of the top ten million websites.
Yet it was not designed with security in mind and, today,
bears a patchwork of fixes and inconsistently designed func-
tions with often unexpected and hardly predictable behavior
that typically yield a large attack surface. Consequently, it
is prone to different types of vulnerabilities, such as SQL
Injection or Cross-Site Scripting. In this paper, we present
an interprocedural analysis technique for PHP applications
based on code property graphs that scales well to large amounts
of code and is highly adaptable in its nature. We implement
our prototype using the latest features of PHP 7, leverage an
efficient graph database to store code property graphs for PHP,
and subsequently identify different types of Web application
vulnerabilities by means of programmable graph traversals.
We show the efficacy and the scalability of our approach by
reporting on an analysis of 1,854 popular open-source projects,
comprising almost 80 million lines of code.

1. Introduction

The most popular and widely deployed language for
Web applications is undoubtedly PHP, powering more than
80% of the top ten million websites [29], including widely
used platforms such as Facebook, Wikipedia, Flickr, or
Wordpress, and contributing to almost 140,000 open-source
projects on GitHub [38]. Yet from a security standpoint,
the language is poorly designed: It typically yields a large
attack surface (e.g., every PHP script on a server can po-
tentially be used as an entry point by an attacker) and bears
inconsistently designed functions with often surprising side
effects [22], all of which a programmer must be aware of
and keep in mind while developing a PHP application.

As aresult of its confusing and inconsistent APIs, PHP is
particularly prone to programming mistakes that may lead to
Web application vulnerabilities such as SQL injections and
Cross-Site Scripting. Combined with its prevalence on the

Web, PHP therefore constitutes a prime target for automated
security analyses to assist developers in avoiding critical
mistakes and consequently improve the overall security of
applications on the Web. Indeed, a considerable amount of
research has been dedicated to identifying vulnerable infor-
mation flows in a machine-assisted manner [15, 16, 4, 5].
All these approaches successfully identify different types
of PHP vulnerabilities in Web applications. However, all of
these approaches have only been evaluated in a controlled
environment of about half a dozen projects. Therefore it is
unclear how scalable they are and how well they perform
in much less controlled environments of very large sets of
arbitrary PHP projects. (See Section 7 on related work for
details). In addition, these approaches are hardly customiz-
able, in the sense that they cannot be configured to look for
various different kinds of vulnerabilities.

The research question of how to detect PHP applica-
tion vulnerabilities at large scale in an efficient manner,
whilst maintaining an acceptable precision and the ability
to customize the detection process as needed, has received
significantly less attention so far. Yet it is a question that is
crucial to cope with, given the rapidly increasing number of
Web applications.

Our Contributions. We propose a highly scalable and
flexible approach for analyzing PHP applications that may
consist of millions of lines of code. To this end, we leverage
the recently proposed concept of code property graphs [35]:
These graphs constitute a canonical representation of code
incorporating a program’s syntax, control flow, and data
dependencies in a single graph structure, which we further
enrich with call edges to allow for interprocedural analysis.
These graphs are then stored in a graph database that lays
the foundation for efficient and easily programmable graph
traversals amenable to identifying flaws in program code.
As we show in this paper, this approach is well-suited
to discover vulnerabilities in high-level, dynamic scripting
languages such as PHP at a large scale. In addition, it is
highly flexible: The bulk work of generating code property
graphs and importing them into a database is done in a
fully automated manner. Subsequently, an analyst can write
traversals to query the database as desired so as to find var-

ious kinds of vulnerabilities: For instance, one may look to
detect common code patterns or look for specific flows from
given types of attacker-controller sources to given security-
critical function calls that are not appropriately sanitized;
what sources, sinks, and sanitizers are to be considered may
be easily specified and adapted as needed.

We show how to model typical Web application vulner-
abilities using such graph traversals that can be efficiently
run by the database backend. We evaluate our approach on
a set of 1,854 open-source PHP projects on GitHub. Our
three main contributions are as follows:

o Introduction of PHP code property graphs. We are the
first to employ the concept of code property graphs
for a high-level, dynamic scripting language such as
PHP. We implement code property graphs for PHP
using static analysis techniques and additionally aug-
ment them with call edges to allow for interprocedural
analysis. These graphs are stored in a graph database
that can subsequently be used for complex queries.
The generation of these graphs is fully automated, that
is, all that users have to do to implement their own
interprocedural analyses is to write such queries. We
make our implementation publicly available to facilitate
independent research.

o Modeling Web application vulnerabilities. We show
that code property graphs can be used to find typi-
cal Web application vulnerabilities by modeling such
flaws as graph traversals, i.e., fully programmable al-
gorithms that travel along the graph to find specific pat-
terns. These patterns are undesired flows from attacker-
controlled input to security-critical function calls with-
out appropriate sanitization routines. We detail such
patterns precisely for attacks targeting both server and
client, such as SQL injections, command injections,
code injections, arbitrary file accesses, cross-site script-
ing and session fixation. While these graph traversals
demonstrate the feasibility of our technique, we em-
phasize that more traversals may easily be written by
PHP application developers and analysts to detect other
kinds of vulnerabilities or patterns in program code.

e Large-scale evaluation. To evaluate the efficacy of our
approach, we report on a large-scale analysis of 1,854
popular PHP projects on GitHub totaling almost 80 mil-
lion lines of code. In our analysis, we find that our
approach scales well to the size of the analyzed code.
In total, we found 78 SQL injection vulnerabilities,
6 command injection vulnerabilities, 105 code injection
vulnerabilities, 6 vulnerabilities allowing an attacker to
access arbitrary files on the server, and one session fixa-
tion vulnerability. XSS vulnerabilities are very common
and our tool generated a considerable number of reports
in our large-scale evaluation for this class of attack.
We inspected only a small sample (under 2%) of these
reports and found 26 XSS vulnerabilities.

Paper Outline. The remainder of this paper is organized
as follows: In Section 2, we discuss the technical back-
ground of our work, covering core concepts like ASTs,

CFGs, PDGs, and call graphs. In Section 3, we present
a conceptual overview of our approach, follow up with
the necessary techniques to represent and query PHP code
property graphs in a graph database, and discuss how typical
classes of vulnerabilities can be modeled using traversals.
Subsequently, Section 4 presents the implementation of our
approach, while Section 5 presents the evaluation of our
large-scale study. Following this, Section 6 discusses our
technique, Section 7 presents related work, and Section §
concludes.

2. Code Property Graphs

Our work builds on the concept of code property graphs,
a joint representation of a program’s syntax, control flow,
and data flow, first introduced by Yamaguchi et al. [35]
to discover vulnerabilities in C code. The key idea of this
approach is to merge classic program representations into
a so-called code property graph, which makes it possible
to mine code for patterns via graph traversals. In particular,
syntactical properties of code are derived from abstract syn-
tax trees, control flow from control flow graphs, and finally,
data flow from program dependence graphs. In addition,
we enrich the resulting structure with call graphs so as to
enable interprocedural analysis. In this section, we briefly
review these concepts to provide the reader with technical
background required for the remainder of the paper.

We consider the PHP code listing shown in Figure 1 as a
running example. For the sake of illustration, it suffers from
a trivial SQL injection vulnerability. Using the techniques
presented in this paper, this vulnerability can be easily
discovered.

2.1. Abstract Syntax Trees (AST)

Abstract syntax trees are a representation of program
syntax commonly generated by compiler frontends. These
trees offer a hierarchical decomposition of code into its
syntactical elements. The trees are abstract in the sense that
they do not account for all nuances of concrete program
formulation, but only represent how programming constructs
are nested to form the final program. For instance, whether
variables are declared as part of a declaration list or as a
consecutive chain of declarations is a detail in the formula-
tion that does not lead to different abstract syntax trees.

function foo() {
Sx = S$_GET["id"];

if (isset ($x)) {
$sgql = "SELECT » FROM users
WHERE id = '$x'";
query ($sql) ;
}
}

Figure 1. Example PHP code.

The nodes of an abstract syntax tree fall into two cate-
gories. Inner nodes represent operators such as assignments
or function calls, while leaf nodes are operands such as
constants or identifiers. As an illustration, Figure 2 shows
the abstract syntax tree for the running example of Figure 1.
As shown by Yamaguchi et al. [35], abstract syntax trees are
well suited to model vulnerabilities based on the presence
or absence of programming constructs within a function or
source file, but they do not contain semantic information
such as the program’s control or data flow. In particular,
this means that they cannot be employed to reason about
the flow of attacker-controlled data within a program, hence
the need for additional structures.

2.2. Control Flow Graphs (CFG)

The abstract syntax tree makes explicit how program-
ming constructs are nested, but does not allow to reason
about the interplay of statements, in particular the possi-
ble order in which statements are executed. Control flow
graphs account for this problem by explicitly representing a
program’s control flow, i.e., the order in which statements
can be executed and the values of predicates that result in
a flow.

A control flow graph of a function contains a designated
entry node, a designated exit node, and a node for each
statement and predicate contained in the function. Nodes
are connected by labeled directed edges to indicate control
flow. Edges originating from statements carry the label € to
indicate unconditional control flow, and edges originating
from predicates are labeled either as true or false to denote
the value the predicate must evaluate to in order for control
to be transferred to the destination node. Figure 3 (left)
illustrates the control flow graph for the running example of
Figure 1: Control flow is mostly linear, except for the two
edges originating in the predicate isset ($x). Depending
on whether this predicate evaluates to true or false, control
may either be transfered to the first statement within the if-
body, or execution of the function may terminate, which is
modeled by the edge to the exit node.

|$7GET["id”] | (CALL) STMT

isset I ARG

$x | $sql | | "SELECT... I | $SQL |

Figure 2. Abstract syntax tree for code in Figure 1.

2.3. Program Dependence Graphs (PDG)

Program dependence graphs were first introduced to
perform program slicing [32] by Ferrante et al. [6]. This rep-
resentation exposes dependencies between statements and
predicates. These dependencies make it possible to statically
analyze the data flow in a program, and thus, the propagation
of attacker-controlled data in particular.

As is true for the control flow graph, the nodes of the
program dependence graph are the statements and predicates
of a function. The edges in the graph are of one of the
following two types: Data dependence edges are created to
indicate that a variable defined at the source statement is sub-
sequently used at the destination statement. These edges can
be calculated by solving the reaching definitions, a canonical
data flow analysis problem [1]. Control dependence edges
indicate that the execution of a statement depends on a
predicate, and can be calculated from the control flow graph
by first transforming it into a post-dominator tree [1]. As an
example, Figure 3 (right) shows the program dependence
graph for our running example, where edges labeled with
D denote data dependence edges, and edges labeled with C
denote control dependence edges.

ENTRY '
€

$x = $_GET["id"] | —| $x = $_GET["id"] |
€

D$x
if (isset($x)) DEX if (isset($x))
true oA
$sql = "SELECT... I —’IESELECT... | Ct
€ false D$sql
query($sql) | query($sql) |'—

€
EXIT

Figure 3. Control flow graph (left) and program dependence graph (right)
for the running example in Figure 1.

2.4. Call Graphs (CG)

While the combination of abstract syntax trees, control
flow graphs, and program dependence graphs into code
property graphs yields a powerful structure for analyzing a
program’s control and data flows, both CFGs and PDGs are
only defined at the function level, and hence, the resulting
code property graphs allow for an intraprocedural analysis
only. To solve this problem, we extend the work by Ya-
maguchi et al. [35] by merging call graphs into the final,
combined structure known as the code property graph. As its
name suggests, a call graph is a directed graph connecting
call nodes, i.e., nodes representing call sites (such as the
call to query ($sql) in Figure 2) to the root node of

the corresponding function definition if a matching function
definition is known (some function definitions, such as the
call to isset ($x), may be an integral part of PHP and in
this case we do not need to construct a call edge). This
allows us to reason about control and data flows at an
interprocedural level.

3. Methodology

In this section, we present the methodology of our
work. We first give a conceptual overview of our approach,
discussing the representation and generation of code prop-
erty graphs from PHP code. Subsequently, we discuss the
viability of code property graphs for the purpose of finding
Web application vulnerabilities and introduce the notion of
graph traversals. We then follow up with details on how
different types of Web application vulnerabilities can be
modeled.

3.1. Conceptual Overview

Property graphs are a common graph structure featured
by many popular graph databases such as Neo4J, OrientDB,
or Titan. A property graph (V| E) is a directed graph con-
sisting of a set V' of vertices (equivalently nodes) and a set
E of edges. Every node and edge has a unique identifier
and a (possibly empty) set of properties defined by a map
from keys to values. In addition, nodes and edges may have
one or more labels, denoting the type of the node or of the
relationship.

Each of the structures presented in Section 2 captures
a unique view on the underlying code. By combining them
into a single graph structure, we obtain a single global view
enriched with information describing this code, called a code
property graph. In this section, we describe the process of
the generation of the code property graph in more detail.

3.1.1. Abstract Syntax Trees. ASTs constitute the first step
in our graph generation process. In order to model the code
of an entire PHP project with syntax trees, we start by
recursively scanning the directory for any PHP files. For
each identified file, PHP’s own internal palrser1 is used to
generate an AST representing the file’s PHP code. Each
node of such an AST is a node of the property graph that
we aim to generate: It is labeled as an AST node and
has a set of properties. The first of these properties is a
particular AST node type: For instance, there is a type for
representing assignments, for function call expressions, for
function declarations, etc. In all, there is a total of 105
different node types. Another property is a set of flags, e.g.,
to specify modifiers of a method declaration node. Further
properties include a line number denoting the location of
the corresponding code, and—in the case of leaf nodes—
a property denoting the constant value of a particular node
(such as the contents of a hardcoded string), as well as a few
other technical properties that we omit here for simplicity.

1. https://wiki.php.net/rfc/abstract_syntax_tree

Additionally, a file node is created for the parsed file
and connected to its AST’s root node, and directory nodes
are created and connected to each other and to file nodes
in such a way that the resulting graph mirrors the project’s
filesystem hierarchy. File and directory nodes are labeled as
Filesystem nodes.

Finally, note that CFGs and PDGs, which we want to
generate next, are defined per function only [1]. Yet PHP is
a scripting language and commonly contains fop-level code,
i.e., there may be code in a PHP file that is not wrapped in a
function, but executed directly by the PHP interpreter when
loading the file. In order to be able to construct CFGs and
PDGs for this code as well, we create an artificial fop-level
function AST node for each file during AST generation,
holding that file’s top-level code. This top-level function
node constitutes the root node of any PHP file’s syntax tree.

3.1.2. Control Flow Graphs. The next step before gen-
erating CFGs is to extract the individual function subtrees
from the ASTs. Function subtrees in these ASTs may exist
side by side, or may be nested within each other: For
instance, a file’s artificial top-level function may contain a
particular function declaration, which in turn may contain a
closure declaration, etc. We thus built a function extractor
that extracts the appropriate subtrees for CFG and PDG
generation and is able to cope with nested functions. These
subtrees are then individually processed by the CFG and
PDG generating routines.

To generate a CFG from an abstract syntax tree of
a function, we first identify those AST nodes that are
also CFG nodes, i.e., nodes that represent statements or
predicates (see Figure 3). Control flow graphs can then be
calculated from the AST by providing semantic information
about all program statements that allow a programmer to
alter control flow. These fall into two disjoint categories:
structured control flow statements (e.g., for, while, if),
and unstructured control flow statements (e.g., goto, break,
continue). Calculation is performed by defining translation
rules from elementary abstract syntax trees to corresponding
control flow graphs, and applying these to construct a pre-
liminary control flow graph for a function. This preliminary
control flow graph is subsequently corrected to account for
unstructured control flow statements.

3.1.3. Program Dependence Graphs. PDGs can be gen-
erated with the help of CFGs and a standard iterative data-
flow analysis algorithm (e.g., [1]). To do so, we perform a
use/def analysis on the individual CFG nodes, meaning that
we use a recursive algorithm to decide, for each statement or
predicate, which variables are used and which variables are
(re-)defined. Once we have this information for each CFG
node, that information is propagated backwards along the
control flow edges to solve the reaching definitions problem
as detailed in Section 2.3.

3.1.4. Call Graphs. The final step in our graph generation
process is the generation of call graphs. During generation of
the ASTs, we keep track of all call nodes that we encounter,

https://wiki.php.net/rfc/abstract_syntax_tree

as well as of all function declaration nodes. Once we finish
the parsing process for all files of a particular project (and
we can thus be confident that we have collected all function
declaration nodes), those call nodes are connected to the cor-
responding function declaration nodes with call edges. We
resolve namespaces (namespace X), imports (use x) and
aliases (use X as Y). Function names are resolved within
the scope of a given project, i.e., we do not need to analyze
include or require statements, which are often only
determined at runtime; instead, all functions declared within
the scope of a project are known during call graph genera-
tion. Note that there are four types of calls in PHP: function
calls (foo ()), static method calls (A: : foo ()), constructor
calls (new A()) and dynamic method calls (sa->foo()).
The first three types are mapped unambiguously. For the
last type, we only connect a call node to the corresponding
method declaration if the called method’s name is unique
within the project; if several methods with the same name
are known from different classes, we do not construct a call
edge, as that would require a highly involved type inference
process for PHP that is out of the scope of this paper (and
indeed, since PHP is a dynamically typed language and
because of its ability for reflection, it is not even possible to
statically infer every object’s type). However, looking at the
empirical study conducted on 1,854 projects that we present
in Section 5, we can report that this approach allowed
us to correctly map 78.9% of all dynamic method call
nodes. Furthermore, out of a total of 13,720,545 call nodes,
there were 30.6% function calls, 54.2% dynamic method
calls, 6.4% constructor calls, and 8.8% static method calls.
This means that 88.6% of all call nodes were successfully
mapped in total.

3.1.5. Combined Code Property Graph. The final graph
represents the entire codebase including the project’s struc-
ture, syntax, control flow, and data dependencies as well
as interprocedural calls. It is composed of two types of
nodes: Filesystem nodes and AST nodes. Some of the AST
nodes (namely, those AST nodes representing statements
or predicates) are simultaneously CFG and PDG nodes.
Additionally, it has five types of edges: Filesystem edges,
AST edges, CFG edges, PDG edges and call edges. This
graph is the foundation of our analysis.

3.2. Graph Traversals

Code property graphs can be used in a variety of ways
to identify vulnerabilities in applications. For instance, they
may be used to identify common code patterns known to
contain vulnerabilities on a syntactical level, while abstract-
ing from formatting details or variable names; to identify
control-flow type vulnerabilities, such as failure to release
locks; or to identify taint-style type vulnerabilities, such
as attacker-controlled input that flows into security-critical
function calls, etc.

Graph databases are optimized to contain heavily con-
nected data in the form of graphs and to efficiently process
graph-related queries. As such, they are an ideal candidate to

contain our code property graphs. Then, finding vulnerabili-
ties is only a matter of writing meaningful database queries
that identify particular patterns and control/data flows an
analyst is interested in. Such database queries are written as
graph traversals, i.e., fully programmable algorithms that
travel along the graph to collect, compute, and output de-
sired information as specified by an analyst. Graph databases
make it easy to implement such traversals by providing a
specialized graph traversal APL.

Apart from logic bugs, most of the vulnerabilities which
occur in Web applications can be abstracted as information-
flow problems violating confidentiality or integrity of the
application. A breach of confidentiality occurs when secret
information, e.g., database credentials, leaks to a public
channel, and hence to an attacker. In contrast, attacks
on integrity are data flows from an untrusted, attacker-
controllable source, such as an HTTP request, to a security-
critical sink. To illustrate the use of code property graphs
to identify vulnerabilities, we focus on information-flow
vulnerabilities threatening the integrity of applications in
this paper. Given a specific application for which we can
determine what data should be kept secret, finding breaches
of confidentiality is equally possible with this technique.
However, for doing so at scale, the core problem is that
it is hard or even impossible to define in general what
data of an application should be considered confidential
and must therefore be protected. Thus, to find information-
flow vulnerabilities violating confidentiality would require
us to take a closer look at each application and identify
confidential data. In contrast, it is generally much easier to
determine what data originates from an untrusted source and
to identify several types of generally security-critical sinks,
as we discuss in Section 3.3. Since we are interested in
performing a large-scale analysis, we concentrate on threats
targeting the integrity of an application.

Before we proceed to more complex traversals to find
information flows, we implement utility traversals that are
aware of our particular graph structure as well as the infor-
mation it contains and define typical travel paths that often
occur in this type of graph. These utility traversals are used
as a base for more complex traversals. For instance, we
define utility traversals to travel from an AST node to its
enclosing statement, its enclosing function, or its enclosing
file, traversals to travel back or forth along the control or the
data flow, and so forth. We refer the reader to Yamaguchi et
al. [35] for a more detailed discussion of utility traversals.

3.3. Modeling Vulnerabilities

As discussed before, although our methodology can be
applied to detect confidentiality breaches, we cannot do this
for large-scale analyses, due to the inherent lack of a notion
of secret data. Hence, we focus on threats to the integrity of
an application. Even though we are conducting an analysis
of server-side PHP code, we are not limited to the discov-
ery of vulnerabilities resulting in attacks which target the
server side (e.g., SQL injections or command injections).
For example, Cross-Site Scripting and session fixation can

be caused by insecure server-side code, but clearly target
clients. Our analysis allows us to detect both attacks, i.e.,
attacks targeting the server and attacks targeting the client.
In the remainder of this section, we first discuss sources
which are directly controllable by an attacker. Subsequently,
we follow up with discussions of attacks targeting the server
and attacks targeting the client. We finish by describing the
process of detecting illicit flows.

3.3.1. Attacker-Controllable Input. In the context of a
Web application, all data which is directly controllable by
an attacker must be transferred in an HTTP request. For the
more specific case of PHP, this data is contained in multiple
global associative arrays. Among these, the most important
ones are [28]:

e $_GET: This array contains all GET parameters, i.e.,
a key/value representation of parameters passed in the
URL. Although the name might suggest otherwise, this
array is also present in POST requests, containing the
URL parameters.

e $_POsST: All data which is sent in the body of a POST
request is contained in this array. Similarly to $_GET,
this array contains decoded key/value pairs, which were
sent in the POST body.

e $_COOKIE: Here, PHP stores the parsed cookie data
contained in the request. This data is sent to the server
in the Cookie header.

e $_REQUEST: This array contains the combination of all
the above. The behavior in cases of collisions can be
configured, such that, e.g., $_GET is given precedence
over $_COOKIE.

e $_SERVER: This array contains different server-related
values, e.g., the server’s IP address. More interestingly,
all headers transferred by the client are accessible via
this array, e.g., the user agent. For our analysis, we
consider accesses to this array for which the key starts
with HTTP_, since this is the default prefix for parsed
HTTP request headers, as well as accesses for which
the key equals QUERY_STRING, which contains the
query string used to access the page.

e $_FILES: Since PHP is a Web programming language,
it naturally accepts file uploads. This array contains in-
formation on and content of uploaded files. Since, e.g.,
MIME type and file name are attacker-controllable, we
also consider this as a source for our analysis.

The values of all of these variables can be controlled or
at least influenced by an attacker. In the case of GET and
POST parameters, an attacker may even cause an innocuous
victim to call a PHP application with an input of their choice
(e.g., using forged links), while the attacker can usually only
modify their own cookies. Yet all of them can be used by
an attacker to call an application with unexpected input,
allowing them to trigger contained vulnerabilities.

3.3.2. Attacks Targeting the Server. For server-side at-
tacks, a multitude of vulnerability classes has to be consid-
ered. In the following, we present each of these classes, as

well as some specific sanitizers which ensure (when used
properly) that a flow cannot be exploited.

SQL Injections are vulnerabilities in which an attacker
exploits a flaw in the application to inject SQL commands of
their choosing. While, depending on the database, the exact
syntax is slightly different, the general concept is the same
for all database engines. In our work, we look for three ma-
jor sinks, namely mysql_query, pg_query, and sqglite_—
query. For each of these, specific sanitizers exist in PHP,
such as for instance mysql_real_escape_string, pg_-—
escape_string Or sgqlite_escape_string.

Command Injection is a type of attack in which the
goal is to execute commands on the shell. More specifically,
PHP offers different ways of running an external program: A
programmer may use popen to execute a program and pass
arguments to it, or she can use shell_exec, passthru, or
backtick operators to invoke a shell command. PHP provides
the functions escapeshellcmd and escapeshellarg,
which can be used to sanitize commands and arguments,
respectively.

Code Injection attacks occur when an adversary is able
to force the application to execute PHP code of their choos-
ing. Due to its dynamic nature, PHP allows the evaluation
of code at runtime using the language construct eval. In
cases where user input is used in an untrusted manner
in invocations of eval, this can be exploited to execute
arbitrary PHP code. As the necessary payload depends on
the exact nature of the flawed code, there is no general
sanitizer which may be used to thwart all these attacks.

In addition, PHP applications might be susceptible to
file inclusion attacks. In these, if an attacker can control
the values passed to include or require, which read and
interpret the passed file, PHP code of their choosing can also
be executed. If the PHP interpreter is configured accordingly,
even remote URLs may be used as arguments, resulting in
the possibility to load and execute remote code. However,
even when the PHP interpreter is configured to evaluate local
files only, vulnerabilities may arise: For instance, if a server
is shared by several users, a malicious user might create
a local PHP file with malicious content, make it world-
readable and exploit another user’s application to read and
execute that file. Another scenario would be that a PHP file
already exists that, when included in the wrong environment,
results in a vulnerability.

Arbitrary File Reads/Writes can result when some
unchecked, attacker-controllable input flows to a call to
fopen. Based on the applications and the access mode
used in this call, an attacker can therefore either read or
write arbitrary files. In particular, an attacker may use ..
in their input to traverse upwards in the directory tree
to read or write files unexpected by the developer. These
vulnerabilities are often defended against by using regular
expressions, which aim to remove, e.g., dots from the input.

3.3.3. Attacks Targeting the Client. Apart from the previ-
ously discussed attacks which target the server, there are
two additional classes of flaws which affect the client.

More specifically, these are Cross-Site Scripting and Session
Fixation, which we outline in the following.

For these types of vulnerabilities, cookies are not a
critical source. This is due to the fact that an attacker cannot
modify the cookies of their victim (without having exploited
the XSS in the first place). Rather, they can forge HTML
documents which force the victim’s browser to send GET
or POST requests to the flawed application.

Cross-Site Scripting (XSS) is an attack in which the
attacker is able to inject JavaScript code in an application.
More precisely, the goal is to have this JavaScript code
execute in the browser of a desired victim. Since JavaScript
has full access to the document currently rendered, this
allows the attacker to control the victim’s browser in the
context of the vulnerable application. Apart from the well-
known attacks which target the theft of session cookies [18],
this can even lead to passwords being extracted [27]. In
the specific case of PHP, a reflected Cross-Site Scripting
attack may occur when input from the client is reflected back
in the response. For these attacks, PHP also ships built-in
sanitizers. We consider these, such as htmlspecialchars,
htmlentities, or strip_tags, as valid sanitizers in our
analysis.

Session Fixation is the last vulnerability we consider.
The attack here is a little less straightforward compared
to those previously discussed. First, an attacker browses to
the vulnerable Web site to get a valid session identifier. In
order to take over her victim’s session, she needs to ensure
that both adversary and victim share the same session [13].
By default, PHP uses cookies to manage sessions. Hence,
if there is a flaw which allows overwriting the session
cookie in the victim’s browser, this can be exploited by
the adversary. To successfully impersonate her victim, the
attacker forcibly sets the session cookie of her victim to her
own. If the victim now logs in to the application, the attacker
also gains the same privileges. To find such vulnerabilities,
we analyze all data flows into setcookie.

3.3.4. Detection Process. After having discussed the vari-
ous types of flaws we consider, we now outline the graph
traversals used to find flaws in applications. To optimize
efficiency, we in fact perform two consecutive queries for
each class of vulnerabilities that we are interested in.

Indexing critical function calls. The first query returns
a list of identifiers of all AST nodes that correspond to a
given security-critical function call. For instance, it finds all
nodes that correspond to call expressions to the function
mysqgl_query. The reason for doing so is that we may
then work with this index for the next, much more complex
traversal, which attempts to find flows to these nodes from
attacker-controllable inputs, instead of having to touch every
single node in the graph. As an example, Figure 4 shows
the Cypher query (see Section 4) that we use to identify
all nodes representing echo and print statements. (It is
straightforward, since echo and print are language con-
structs in PHP, i.e., they have a designated node type). If
done right, such an index can be generated by the graph

MATCH (node:AST)

USING INDEX node:AST (type)
WHERE node.type IN ["AST_ECHO",
RETURN node.id;

"AST_PRINT"]

Figure 4. Sample indexing query in Cypher.

database backend in a highly efficient manner, as we will
see in Section 5.

Identifying critical data flows. The second query is more
complex. Its main idea is depicted in Figure 5. Its purpose is
to find critical data flows that end in a node corresponding
to a security-critical function call.

For each node in the index generated by the previous
traversal, the function init is called, a recursive function
whose purpose is to find such data flows even across func-
tion borders. It first calls the function visit, which starts
from the given node and travels backwards along the data
dependence edges defined by the PDG using the utility
traversal sources; it only travels backwards those data
dependence edges for variables which are not appropriately
sanitized in a given statement. It does so in a loop until
it either finds a low source, i.e., an attacker-controllable
input, or a function parameter. Clearly, there may be many
paths that meet these conditions; they are all handled in
parallel, as each of the utility traversals used within the
function visit can be thought of as a pipe which takes
a set of nodes as input and outputs another set of nodes.
The loop emits only nodes which either correspond to a
low source or a function parameter. Finally, for each of the
nodes emitted from the loop, the step path outputs the paths
that resulted to these nodes being emitted. Each of these
paths corresponds to a flow from either a parameter or a
low source to the node given as argument to the function.
Note that since we travel backwards, the head of each path is
actually the node given as argument, while the last element
of each path is a parameter or low source.

Back in the function init, the list of returned paths
is inspected. Those paths whose last element is not a pa-
rameter (but a low source) are added to the final list of
reported flows. For those paths whose last element is indeed
a parameter, we perform an interprocedural jump in the
function jumpToCallSiteArgs: We travel back along all
call edges of the function defining this parameter to the
corresponding call expression nodes, map the parameter to
the corresponding argument in that call expression, then
recursively apply the overall traversal to continue traveling
back along the data dependence edges from that argument
for each call expression that we traveled to—after the re-
cursion, the returned paths are connected to the found paths
in the called function. For the sake of presentation, the
simplified code in Figure 5 glosses over some technicalities,
such as ensuring termination in the context of circular data
dependencies or recursive function calls, or tackling corner
cases such as sanitizers used directly within a security-
critical function call, but conveys the general idea.

The end result output by the path-finding traversal is a
set of interprocedural data dependence paths (i.e., a set of

def init(Vertex node) {

finalflows = [];
varnames = getUsedVariables (node) ; le
flows = visit (node, varnames); // get

for(path in flows) {

if (path.last () .type == TYPE_PARAM) ({
callSiteArgs = jumpToCallSiteArgs(path.last());
callingFuncFlows = [];
for (Vertex arg in callSiteArgs) {
callingFuncFlows.addAll (init (arg)); // re
}
// connect the paths
for (List callingFuncFlow : callingFuncFlows)
finalflows.add(path + callingFuncFlow) ;
}
}
else {
finalflows.add(path);

1
I

}

return finalflows;

}

def visit(Vertex sink, List varnames) {

sink

.statements () // traverse up to CFG noc

.as ('datadeploop'
sources (varnames)
.sideEf { varnames = getUnsanitizedVars(it) }
.sideEffect{ foundsrc = containsLowSource(it) }

.loop ('datadeploop'){ !foundsrc && it.type != TYPE_PARAM }

.path ()
}

def jumpToCallSiteArgs(Vertex param)
param

.sideEffect{ paramNum = it.c
O /7

o

nildnum == paramNum

Figure 5. (Simplified) path-finding traversal in Gremlin.

lists of nodes) starting from a node dependent on an attacker-
controllable source and ending in a security-critical function
call, with no appropriate sanitizer being used on the way.
These flows correspond to potential vulnerabilities and can
then be investigated by a human expert in order to either
confirm that there is a vulnerability, or determine that the
flow cannot actually be exploited in practice.

As an example, consider the PHP code in Figure 6.
Starting from the echo statement, the traversal travels the
data dependence edges backwards both to the assignment of
$c and to the parameter $a of function bar. The assignment
of sc uses a low source without an appropriate sanitizer,
hence this flow is reported. In the case of the parameter
$a, the traversal travels to the call expression of function
bar in function foo and from there to argument $a, then
recursively calls itself starting from that argument. Since sa
likewise originates from a low source without sanitization,
this flow is reported too. Note that even though variable

{

0
Sa = $_GET['a']l;
$b = $_GET['b'];
bar ($a, $b);

}

function bar($a, $b) {
$c = S_GET['c'];
echo $a.S$c;

}

Figure 6. Example PHP code.

$b also originates from a low source and is passed as an
argument to function bar, the parameter $b does not flow
into the echo statement and hence, no flow is reported in
this case.

4. Implementation

To generate ASTs for PHP code, we leverage a PHP
extension’ which exposes the PHP ASTs internally gener-
ated by the PHP 7 interpreter as part of the compilation
process to PHP userland. Our parser utility generates ASTs
for PHP files, then exports those ASTs to a CSV format.
As described in Section 3.1, it also scans a directory for
PHP files and generates file and directory nodes reflecting
a project’s structure. Using PHP’s own internal parser to
generate ASTs, instead of, say, writing an ANTLR grammar
ourselves, means that AST generation is well-tested and
reliable. Additionally, we inherently support the new PHP 7
version including all language features. At the same time,
parsing PHP code written in older PHP versions works as
well. Some PHP features have been removed in the course
of time, and executing old PHP code with a new interpreter
may cause runtime errors—however, such code can still
be parsed, and the non-existence of a given function (for
example) in a newer PHP version does not impede our
analysis.

For our database backend, we leverage Neo4J, a popular
open-source graph database written in Java. The CSV format
output by our parser utility can be directly imported into a
Neo4] database using a fast batch importer for huge datasets
shipped with Neo4J. This allows us to efficiently access
and traverse the graph and to take advantage of the server’s
advanced caching features for increased performance.

In order to generate CFG, PDG, and call edges, we
implemented a fork of Joern [35], which builds similar code
property graphs for C. We extended Joern with the ability to
import the CSV files output by our PHP parser and map the
ASTs that they describe to the internal Joern representation
of ASTs, extending or modifying that representation where
necessary. We then extended the CFG and PDG generating
code in order to handle PHP ASTs. Next, we implemented
the ability to generate call graphs in Joern. Finally, we
added an export functionality that outputs the generated
CFG, PDG, and call edges in CSV format. These edges can

2. https://github.com/nikic/php-ast

https://github.com/nikic/php-ast

thus be imported into the Neo4J database simultaneously
with the CSV files output by our parser.

The flow-finding graph traversals described in Sec-
tion 3.3.4 are written in the graph traversal language Grem-
lin,> which builds on top of Groovy, a JVM language. In
addition to Gremlin, Neo4J also supports Cypher, an SQL-
like query language for graph databases which is geared
towards simpler queries, but is also more efficient for such
simple queries. We use Cypher for the indexing query
of security-critical function calls described in the previous
section. Both Gremlin and Cypher scripts are sent to the
Neo4J server’s REST API endpoint and the queries’ results
are processed using a thin Python wrapper.

Our tool is free open-source software and has been
integrated into the Joern framework, available at:

https://github.com/octopus-platform/joern

5. Evaluation

In this section, we evaluate our implemented approach.
We first present the dataset used and follow up with a
discussion of the findings targeting both server and client.

5.1. Dataset

Our aim was to evaluate the efficacy of our approach
on a large set of projects in a fully automated manner, i.e.,
without any kind of preselection by a human. We used the
GitHub API in order to randomly crawl for projects that are
written in PHP and have a rating of at least 100 stars to
ensure that the projects we analyze enjoy a certain level of
interest from the community.

As a result, we obtained a set consisting of 1,854
projects. We ensured that there were no clones amongst
these (i.e., identical codebases). We then applied our tool
to build code property graphs for each of these projects,
and imported all of these code property graphs into a single
graph database that we subsequently ran our analysis on.

As a final step before the actual analysis, we proceeded
to create an index of AST node types in the graph database.
An index is a redundant copy of information in the database
with the purpose of making the retrieval of that information
more efficient. Concretely, it means that we instructed the
database backend to create an index mapping each of the 105
different AST node types to a list of all node identifiers that
have the given type. We can thus efficiently retrieve all AST
nodes of any given type. This approach makes the identifi-
cation of nodes that correspond to security-critical function
calls (i.e., the first query as explained in Section 3.3.4) more
efficient by several orders of magnitude.

On such a large scale, it is interesting to see how well
our implementation behaves in terms of space and time. We
performed our entire analysis on a machine with 32 physical
2.60 GHz Intel Xeon CPUs with hyperthreading and 768 GB
of RAM. The time measurements for graph generation and
the final size of the database are given in Table 1.

3. http://tinkerpop.incubator.apache.org

Statistics on database generation

AST generation 40m 30s
CFG, PDG, and call edge generation 5h 10m 33s
Graph database import 52m 11s
AST node type indexing 3h 1m 32s
Database size (before indexing) 56 GB
Database size (after indexing) 66 GB

TABLE 1. STATISTICS ON DATABASE GENERATION.

P C
of projects 1,850 4
of PHP files 428,796 952
of LOC 77,722,822 356,400
of AST nodes 303,105,896 1,955,706
of AST edges 302,677,100 1,954,754
of CFG edges 25,447,193 197,656
of PDG edges 14,459,519 187,785
of call edges 3,661,709 25,747

TABLE 2. DATASET AND GRAPH SIZES.

Upon inspection of the crawled dataset, we judged that
it would be sensible to distinguish two subsets of projects
with respect to our analysis:

o C: Among the crawled 1,854 projects, we found that 4
were explicitly vulnerable software for educational pur-
poses, or web shells. In this set, we expect a large
number of unsanitized flows, as these projects contain
such flows on purpose. Therefore, this set of projects
can be seen as a sanity check for our approach to find
unsanitized flows: If it works well, we should see a
large number of reports. We show that this is indeed
the case.

o P: This is the set of the remaining 1,850 projects. Here
we expect a proportionally smaller set of unsanitized
flows, as such flows may correspond to actually ex-
ploitable vulnerabilities.

In Table 2, we present statistics concerning the size of
the projects and the resulting code property graphs in the
two sets P and C. All in all, the total number of lines of
code that we analyze amounts to almost 80 million, with
the smallest project consisting of only 22 lines of code, and
the largest consisting of 2,985,451 lines of code. To the best
of our knowledge, this is the largest collection of PHP code
that has been scanned for vulnerabilities in a single study.

The resulting code property graphs consist of over 300
million nodes, with about 26 million CFG edges, 15 million
PDG edges, and 4 million call edges. The number of AST
edges plus the number of files equals the number of AST
nodes, since each file’s AST is a tree. Evidently, there are
many more AST edges than CFG or PDG edges, since
control flow and data dependence edges only connect AST
nodes that correspond to statements or predicates.

Concerning the time needed by the various traversals as
reported in the remainder of this section, we note that on the
one hand, a large number of CPUs is not necessarily of much
help, since a traversal is hard to parallelize automatically for
the graph database server. The presence of a large memory,
on the other hand, enables the entire graph database to live

https://github.com/octopus-platform/joern
http://tinkerpop.incubator.apache.org

in memory; we expect this to yield a great performance
increase, although we have no direct time measurements to
compare to, as we did not run all our traversals a second time
with a purposefully small heap only to force I/O operations.

5.2. Findings

In this section, we present the findings of our analysis.
As detailed in Section 3.3, our approach aims to find vulner-
abilities which can be used to attack either server or client,
and we discuss these in Sections 5.2.1 and 5.2.2 respectively.
For every type of security-critical function call, we consider
different sets of sanitizers as valid (see Section 3.3). How-
ever, for all of them, we consider the PHP functions crypt,
md5, and shal as a sufficient transformation of attacker-
controlled input to safely embed it into a security-critical
function call. Additionally, we accept preg_replace as
a sanitizer; this is fairly generous, yet since we evaluate
our approach on a very large dataset, we want to focus
on very general types of flows. (In contrast, when using
our framework for a specific project, it could be fine-
tuned to find very specific flows, e.g., we could consider
preg_replace as a sanitizer only in combination with a
given set of regular expressions).

5.2.1. Attacks Targeting the Server.

SQL Injection. For SQL injections, we ran our analysis
separately for each of the security-critical function calls
mysqgl_gquery, pg_query, and sglite_qguery. The large
majority of our findings was related to calls to mysql_-
query. Our findings for mysqgl_query and pg_query are
summarized in Tables 3 and 4. In the case of sqlite_-
query, our tool discovered 202 calls in total, but none of
these were dependent on attacker-controllable inputs, hence
we omit a more detailed discussion for this function.

Tables 3 and 4 show the time needed for the indexing
query to find all function calls to mysgl_query and pg_-—
query, respectively, and for the traversals to find flows from
attacker-controllable inputs to these calls. Furthermore, they
show the total number of found function calls in both the
sets P and C. Then, they show the total number of sinks,
i.e., the size of the subset of these function calls which
do indeed depend on attacker-controllable input without
using an appropriate sanitization routine. The number in
parentheses denotes the total number of flows, that is, the
number of reported paths which have one of these sinks
as an endpoint. Finally, the tables show the number of
vulnerabilities: We investigated all reports from our tool and
counted the number of actually exploitable vulnerabilities.
Here, a vulnerability is defined as a sink for which there
exists at least one exploitable flow. Thus, the number of
vulnerabilities should be compared to the number of re-
ported sinks, as multiple exploitable flows into the same
sink are only counted as a single vulnerability. We do not
report on vulnerabilities in C due to the fact that these
projects are intentionally vulnerable. However, we analyzed
these reports and confirmed that they do indeed point to

P C

Indexing query 1m 19s
Pathfinder traversal 34m 32s
mysqgl_query calls 3,098 963
Sinks (Flows) 322 (2,023)

171 (244)
Vulnerabilities 74 -
TABLE 3. EVALUATION FOR MYSQL_QUERY.

P «
Indexing query Im 16s
Pathfinder traversal 3m 42s
pPg_query calls 326 55
Sinks (Flows) 6 (6) 5 ()
Vulnerabilities 4 -

TABLE 4. EVALUATION FOR PG_QUERY.

exploitable flows in most cases. In those cases where the
flows are not exploitable, input is checked against a whitelist
or regular expression, or sanitized using custom routines.

As a result of our manual inspection, we found that 74
out 322 sinks for mysgl_query were indeed exploitable
by an attacker, which yields a good hit rate of 22.9%. For
pg_query, we performed even better: We found that 4 out
of 6 sinks were indeed vulnerable.

Among the flows that we deemed non-critical, we found
that many could be attributed to trusted areas of web
applications, i.e., areas that only a trusted, authenticated
user, such as an administrator or moderator, can access in
the first place. Such flows may still result in exploitable
vulnerabilities if, for instance, an attacker manages to get
an administrator who is logged in to click on some forged
link. For our purposes, however, we make the assumption
that such an area is inaccessible, and hence, focus on the
remaining flows instead.

A smaller subset of the flows that we considered non-
critical was found in install, migrate, or update scripts which
are usually deleted after the process in question is finished
(or made inaccessible in some other way). However, if a user
is supposed to take such measures manually, and forgets
to do so, these flows may—unsurprisingly—also result in
exploitable vulnerabilities. Our interest, however, lies more
in readily exploitable flaws, so these flaws are not within
our scope.

Lastly, several flows were non-critical for a variety of
reasons. For instance, programmers globally sanitize arrays
such as $_GET or $_POST before using their values at all.
We also observed that many programmers sanitized input
by using ad-hoc sanitizers, such as matching them against
a whitelist, or casting them to an integer. For an analyst
interested in a specific project, it would be easy to add such
sanitizers to the list of acceptable sanitizers to improve the
results.

Command Injection. The results of our traversals for
finding command injections are summarized in Table 5.

Here it is nice to observe that the ratio of sinks to the
total number of calls is much higher in the set C (i.e.,
64/270 = 0.24) than it is in the set P (19/1598 = 0.012).

P C

Indexing query 2m 28s

Pathfinder traversal 13m 14s
shell_exec/popencallsand 1,598 270
backtick operators

Sinks (Flows) 19 (47) 64 (1,483)

Vulnerabilities 6 -
TABLE 5. EVALUATION FOR SHELL_EXEC, POPEN AND THE
BACKTICK OPERATOR.

P C
Indexing query 3s
Pathfinder traversal 48m 41s
eval statements 5,111 255
Sinks (Flows) 19 (2,404) 115 (147)

Vulnerabilities 5 -
TABLE 6. EVALUATION FOR EVAL.

Indeed, for web shells in particular, unsanitized flows from
input to shell commands are to be expected. This observation
confirms that our approach works well to find such flows.
In P, we are left with only 19 sinks (originating from 47
flows), of which we confirmed 6 to be vulnerable, yielding a
hit rate of 6/19 = 0.32, i.e., 32%. For the others, we find that
these flows use the low input as part of a shell command
and cast it to an integer or check that it is an integer before
executing the command, or check it against a whitelist.

Code Injection. A large class of vulnerabilities are code
injections. Since this can occur by either having control
over a string passed to eval or over the URL passed to
include or require, we focus on both of these classes in
our analysis. We summarize our findings in Tables 6 and 7.
We first discuss the results for eval, then turn to include
and require.

For eval, as was true for command injection, it is nice
to observe yet again that the ratio of sinks to total number
of statements is significantly higher in C (115/255 = 0.6)
than it is in P (19/5111 = 0.004). As expected, code injec-
tion is much more common in web shells or intentionally
vulnerable software than in other projects, confirming once
more that our approach works well to find such flows. The
indexing query is very efficient in this case (3 seconds),
which can be explained by the fact that eval is actually a
PHP construct that corresponds to a distinguished AST node
type: Hence, the database only needs to return all nodes of
that particular type, whereas in the case of mysql_query
for example, the database needs to check a constellation

P C
Indexing query Ss
Pathfinder traversal 1d 2h 5m 41s
include, include_once, 199,169 1,792
require, require_once
statements
Sinks (Flows) 455 (1,292) 50 (100)
Vulnerabilities 100 -

TABLE 7. EVALUATION FOR INCLUDE / REQUIRE.

P C
Indexing query 1m 18s
Pathfinder traversal lh 47m 35s
fopen calls 11,288 949
Sinks (Flows) 265 (667) 357 (1,121)

Vulnerabilities 6 -
TABLE 8. EVALUATION FOR FOPEN.

of several AST nodes in order to identify the calls to this
function.

There is no universal sanitizer for the eval construct.
When evaluating input from low sources, allowable input
very much depends on the context. Upon inspection, we
find that many flows are not vulnerable because an attacker-
controllable source first flows into a database request, and
then the result of that database request is passed into eval.
In other cases, whitelists or casts to ints are used. We do,
however, find 5 sinks where an attacker can inject code,
i.e., exploitable code injection flaws. This yields a hit rate
of 5/19 = 0.26.

Lastly, we also investigated the reason for there being so
many flows with so few sinks in the case of eval: In one of
the projects, an eval is frequently performed on the results
of various processed parts of several database requests.
These database queries often use several variables from low
sources (properly sanitized). The various combinations of
the different sources, the different database requests and the
processed parts of the results account for the high number
of flows, which eventually flow into only a handful of sinks.

In the case of the PHP language constructs include /
require, there is no universal standard on how to sanitize
input variables either. Accordingly, we do find 100 vulner-
abilities where an attacker is indeed able to inject strings
of their choosing into a filename included by an include
or require statement. However, in the vast majority of
these cases, the attacker can only control a part of the
string. A fixed prefix hardly hurts an attacker since they
may use the string .. to navigate the directory hierarchy,
but a fixed suffix is harder to circumvent: It requires that
remote file inclusion is allowed, or that an exploitable file
with a particular ending already exists on the server, or that
an attacker can create their own local files on the server and
mark them as world-readable. This is a limitation of the type
of attack per se, rather than of our approach.

Arbitrary File Reads/Writes. For vulnerabilities poten-
tially resulting in file content leaks or corruptions, we look
at the function call fopen, used to access files. We report
on our findings in Table 8.

Yet again and as expected, we observe that the ratio of
sinks to calls is greater in C (357/949 = 0.38) than in the
set P (265/11288 = 0.023): Arbitrary files are much more
commonly opened from low input on purpose in C.

As was the case for include / require, there is no
standard sanitizer in this case. Upon inspecting the flows, we
again find whitelists, database requests or casts to integers
that prevent us from exploiting the flow. Even when an at-
tacker does indeed have some influence on the opened file—

P C
Indexing query 25s
Pathfinder traversal 5d 7h 57m 8s
echo statements and 946,170
print expressions
Sinks (Flows) 15,972 (45,298) 2,788 (5,550)
Sample 726 (852) -
Vulnerabilities 26 -

TABLE 9. EVALUATION FOR ECHO / PRINT.

36,077

unintended by the programmer—this does not necessarily
induce a vulnerability: In many cases, the file is opened and
processed internally only, without being leaked and with no
harm to the program. This explains why we find only 6
vulnerabilities out of a total of 265 sinks.

5.2.2. Attacks Targeting the Client.

Cross-Site Scripting (XSS). After having discussed
attacks which target the server, we now turn to flaws which
allow an attack against the client. The results for Cross-Site
Scripting are shown in Table 9.

At first glance it may seem astounding that there are so
many instances of echo and print nodes in our graph.
This, however, is to be expected if we think about the
nature of PHP: PHP is a web-based language that focuses on
producing HTML output. We also note that, when HTML
code is intermixed with PHP code, i.e., there is code outside
of <?php ?> tags, it is treated like an argument for an
echo statement by the PHP AST parser. Additionally, the
inline echo tags <?= $var; 2> also produce echo nodes
in the AST. Finally, passing several arguments to echo as in
echo exrpl, expr2; produces a distinct echo node for
each argument. The time taken by the pathfinder traversal is
quite high. Indeed, the running time of this traversal grows
linearly in the number of nodes it has to process. It averages
to 4 minutes and 9 seconds for each of the 1,854 projects.

Since echoing input from the user is a common sce-
nario in PHP, several standard sanitizers exist: We consider
htmlspecialchars, htmlentities, and strip_tags.
Still, we can observe here that the number of remaining
flows in P is very high (45,298). However, it must also be
noted that they result from a set of 1,850 projects, thus aver-
aging to only about 24 flows per project. Hence, inspecting
the flows when analyzing a single project appears perfectly
feasible; it is clear that the number of flows grows linearly
in the number of projects. Yet in our large-scale study, we
cannot inspect all of the reports in a reasonable amount of
time. Therefore, we sampled 1,000 flows at random, 852 of
which fell into the set P and ended in 726 distinct sinks
spread across 116 different projects.

Upon inspection of the sample, we find many uncritical
paths that use sanitizers in the form of whitelists or casts to
integers. In other cases, even though HTML and JavaScript
code could be injected, the PHP script explicitly set the
content type of the response, e.g., to application/Jjson.
This way, browsers are forced to disable their content sniff-
ing and interpret the result as JSON [37]. In such cases, the

P C
Indexing query 1m 17s
Pathfinder traversal 8m 28s
setcookie calls 1,403 403
Sinks (Flows) 158 (507)

63 (95)
Vulnerabilities 1 -
TABLE 10. EVALUATION FOR SETCOOKIE.

HTML parser and the JavaScript engine are not invoked;
hence, such a flow cannot be exploited.

Still, we do find 26 exploitable XSS vulnerabilities in 16
different projects, e.g., in the popular software LimeSurvey.*
By projecting the ratio of 16 vulnerable projects to the
reported 116 projects (13.7%), we expect that about 255
of the 1,850 projects are vulnerable to XSS attacks, which
validates the fact that XSS vulnerabilities are the most
common application-level vulnerability on the Web [33].
Hence, the fact that we obtain a high number of flows must
also be attributed to the fact that we analyze a very large
number of projects and that such vulnerabilities are, indeed,
very common. These facts should be kept in mind when
considering the large number of reported flows.

Session Fixation. As we discussed in Section 3.3, ses-
sion fixation attacks can be conducted when an attacker can
arbitrarily set a cookie for her victim. Therefore, to find such
vulnerabilities, we focused on function calls to setcookie,
the results of which are shown in Table 10.

There is no standard sanitizer for setcookie. Upon
inspecting the flows, we find only one vulnerability among
the 158 sinks. This is mainly due to the following fact: In
many of these cases, an attacker is indeed able to control
the value of the cookie. However, for an exploitable session
fixation vulnerability, the attacker needs to control both the
name and the value of the cookie (or the name of the cookie
must already be that of the session identifier cookie), an
opportunity which turns out not to be very common.

6. Discussion

The main goal of our evaluation was to evaluate the
efficacy and applicability of our approach to a large amount
of PHP projects without hand-selecting these projects first,
i.e., in a fully automated manner (the entire process of crawl-
ing for projects, parsing them, generating code property
graphs, importing them into a graph database and running
our traversals requires scant human interaction). The final
inspection of the reported flows cannot be automated; it
requires contextual information and human intelligence to
decide whether some flow does indeed lead to an exploitable
vulnerability in practice.

Evaluating on such a large scale, however, requires mak-
ing compromises. In particular, we can only focus on general
types of flows; had we focused on a small set of selected
projects instead, we could have modeled the flows that we
were looking for more precisely. For instance, we would be

4. We reported this and other bugs to the developers. The vulnerability
in LimeSurvey has since been acknowledged and fixed.

able to model custom sanitization operations implemented
in a particular project so as to improve the quality of the
reports, or to look for information flows violating confi-
dentiality of an application by identifying what data of the
given application is meant to be kept secret (see Section 3).
However, we opted for a large-scale evaluation since this
has, to the best of our knowledge, not been done before and
we thus considered it an interesting avenue for research.

In the end, our approach performed better for some
types of vulnerabilities than for others. In the case of code
injection, we obtained a good hit rate of about 25%, whereas
in the case of Cross-Site Scripting, only about 4% of the
reported data flows were indeed exploitable. Considering
that a large-scale evaluation comes at the cost of a decreased
hit rate, we believe that these numbers are still within reason.
As far as efficiency is concerned, the combined computing
time was a little under a week for the 1,854 projects.
However, the lion’s share of the time (over 5 days) was
consumed by the traversal looking for Cross-Site Scripting
vulnerabilities. This is explained by the fact that flows from
low sources to echo statements are very common in PHP.
All in all, our approach appears to scale well, and it could
be further improved by parallelizing the traversals.

Due to the rich information on the underlying code
provided by code property graphs and the programma-
bility of the traversals, our approach is flexible and
can be used for other types of vulnerabilities that we
did not consider here. For instance, it would be pos-
sible to look for implicit flows, that is, vulnerabilities
resulting from code such as if (attacker_var > 0)
{sink (0);} else {sink(1);}. Such an analysis would
require inspecting the control flow contained in the code
property graph, rather than the data dependencies. Likewise,
we envision our tool could be used to find more specific
types of flaws, such as, for instance, magic hashes. These are
hashes (typically, of passwords) starting with the string Oe.
If a PHP program naively uses the operator == to compare
two hashes, such a hash is interpreted as the number 0,
thereby making it easy for an attacker to find collisions.’
To find this kind of vulnerability using our framework, all
code matching the syntactical property of the result of a hash
function (hash, md5, ...) being compared to another value
with the == operator could be easily queried from a code
property graph database and coupled with other conditions,
e.g., that the hashed value depends on a public input, using
similar techniques as the ones presented in this work. The
expressiveness of graph traversals allows to easily model
many different kinds of vulnerabilities.

Clearly, there are also flows which are impossible to
discover using static analysis. For instance, we cannot recon-
struct the control or data flow yielded by PHP code evaluated
within an eval construct. Another interesting example is
PHP’s capability for reflection. Consider for example the
code snippet Sa = source(); $b = $Sa; sink($b);:
Here, the variable passed into the sink is the variable whose
name is the same as the value of the variable $a. Since the

5. More details on https://www.whitehatsec.com/blog/magic-hashes/.

value of $a cannot be determined statically, but depends
on runtime input, this scenario can only be covered by
dynamic analysis. To tackle this case with static analysis, we
have two options: we can either over-approximate or under-
approximate, i.e., we can either assume that any variable
which is present in the current context could flow into the
sink, or assume that no other variable was written by an
adversary. On the one hand, over-approximating will result
in a higher number of false positives, i.e., flows will be
detected that turn out not to be harmful in practice. On
the other hand, under-approximating will result in a higher
number of false negatives, meaning that some vulnerable
flows will remain undetected. Here, we decided to under-
approximate so as to reduce false positives.

Global variables also represent a hard problem: If, during
analysis, the input to a security-critical function can be
traced back to a global variable, then it is not clear whether
this global variable should be considered as tainted, since
that depends on what other functions which manipulate the
same variable may have executed earlier, or which files ma-
nipulating this variable may have included the file containing
the code currently analyzed, but this information is usually
only available at runtime, i.e., it is statically unknown.

Although we evaluated our tool once on a single crawl of
a large amount of GitHub projects in this paper, we envision
that it could be useful in other scenarios. In particular, it
can potentially be useful to companies with large and fast-
evolving code bases when run recurrently in order to find
newly introduced security holes quickly. Clearly, such a use
case could be interesting for Wordpress platforms or online
shops. Here, the flexibility and customizability of our tool
is particularly effective.

7. Related Work

We review the two most closely-related areas of previous
research, i.e., the discovery of vulnerabilities in PHP code,
and flaw detection based on query languages and graphs.

7.1. Discovery of Vulnerabilities in PHP Code

The detection of security vulnerabilities in PHP code
has been in the focus of research for over ten years. One of
the first works to address the issue of static analysis in the
context of PHP was produced by Huang et. al [11], who pre-
sented a lattice-based algorithm derived from type systems
and typestate to propagate taint information. Subsequently,
they presented another technique based on bounded model
checking [12] and compared it to their first technique. A
significant fraction of PHP files were rejected due to the
applied parser (about 8% in their experiments). In contrast,
by using PHP’s own internal parser, we are inherently able to
parse any valid PHP file and will even be able to parse PHP
files in the future as new language features are added. If such
a language feature alters control flow or re-defines variables,
we will be able to parse it, but we will have to slightly
correct control flow graph and/or program dependence graph
generation to avoid introducing imprecisions.

https://www.whitehatsec.com/blog/magic-hashes/

In 2006, Xie and Aiken [34] addressed the problem
of statically identifying SQL injection vulnerabilities in
PHP applications. At the same time, Jovanovic et al. pre-
sented Pixy [15], a tool for static taint analysis in PHP.
Their focus was specifically on Cross-Site Scripting bugs
in PHP applications. In total, they analyzed six different
open-source PHP projects. In these, they rediscovered 36
known vulnerabilities (with 27 false positives) as well as
an additional 15 previously unknown flaws with 16 false
positives. Wasserman and Su presented two works focused
on statically finding both SQL injections and Cross-Site
Scripting [30, 31]. Additional work in this area has been
conducted on the correctness of sanitization routines [3, 36].
As a follow-up on their work Pixy, Jovanovic et al. [16]
extended their approach to also cover SQL injections. While
all these tools were pioneers in the domain of automated
discovery of vulnerabilities in PHP applications, they fo-
cused on very specific types of flaws only, namely, Cross-
Site Scripting and SQL injections. In this work, we cover a
much wider array of different kinds of vulnerabilities.

Most recently, Dahse and Holz [4] presented RIPS,
which covers a similar range of vulnerabilities as we do
in this work. RIPS builds control flow graphs and then
creates block and function summaries by simulating the
data flow for each basic block, which allows to conduct a
precise taint analysis. In doing so, the authors discovered
previously unknown flaws in osCommerce, HotCRP, and
phpBB2. Compared to our work, they only evaluated their
tool on a handful of selected applications, but did not
conduct a large-scale analysis. Since RIPS uses a type of
symbolic execution to build block and function summaries,
it is unclear how well it would scale to large quantities of
code. Instead of symbolic execution, we efficiently build
program dependence graphs to conduct taint analysis; to
the best of our knowledge, we are the first to actually
build program dependence graphs for PHP. Moreover, RIPS
lacks the flexibility and the programmability of our graph
traversals: It is able to detect a hard-coded, pre-defined set
of vulnerabilities. In contrast, our tool is a framework which
allows developers to program their own traversals. It can be
used to model various types of vulnerabilities, in a generic
way (as we demonstrate in this work) or geared towards a
specific application. When used for a specific application, it
can even be used to detect confidentiality-type properties.

Dahse and Holz followed up on their work by detect-
ing second-order vulnerabilities, e.g., persistent Cross-Site
Scripting, identifying more than 150 vulnerabilities in six
different applications [5]. Follow-up work inspired by them
was presented in 2015, when Olivo et al. [23] discussed a
static analysis of second-order denial-of-service vulnerabili-
ties. They analyzed six applications, which partially overlap
with the ones analyzed by previous work, and found 37
vulnerabilities, accompanied by 18 false positives. These
works can be considered as orthogonal to ours.

In summary, while there has been a significant amount
of research on the subject of static analysis for PHP, these
works focused on a small set of (the same) applications.
In contrast, our work is not aimed towards analyzing a

single application in great detail. Instead, our goal was to
implement an approach which would scale well to scanning
large quantities of code and would be flexible enough to
add support for additional vulnerability types with minimal
effort. Unfortunately, a direct comparison of results between
our tool and other tools is difficult, due to the fact that we
do not usually have access to the implemented prototypes
on the one hand, and the limited detail of the reports on
the other. This difficulty has also been noticed by other
authors [16, 4]. Usually, only the number of detected vulner-
abilities is reported, but not the vulnerabilities as such. Even
comparing the numbers is not straightforward, as there is
no universally agreed-upon standard on how vulnerabilities
should be counted. For instance, when there exist several
vulnerable data flows into the same security-critical function
call, it is not clear whether each flow should be counted
as a vulnerability, or whether it should count as a single
vulnerability, or anything in-between (e.g., depending on the
similarity of the different flows). In this work, we explained
precisely how we counted vulnerabilities, and we intend
to make our tool publicly available on GitHub both for
researchers and developers.

7.2. Flaw Detection Using Query Languages and
Graphs

Our work uses queries for graph databases to describe
vulnerable program paths, an approach closely related to de-
fect detection via query languages, as well as static program
analysis using graph-based program representations.

The concept of using query languages to detect security
and other bugs has been considered by several researchers
in the past [e.g., 7, 9, 19, 21, 24]. In particular, Martin et
al. [21] proposed the Program Query Language (PQL), an
intermediary representation of programs. With this represen-
tation, they are able to identify violations of design rules,
to discover functional flaws and security vulnerabilities in
a program. Livshits and Lam [20] used PQL to describe
typical instances of SQL injections and Cross-Site-Scripting
in Java programs, and successfully identified 29 flaws in
nine popular open-source applications.

Graph-based program analysis has a long history, rang-
ing back to the seminal work by Reps [25] on program
analysis via graph reachability, and the introduction of the
program dependence graph by Ferrante et al. [6]. Follow-
ing along this line of research, Kinloch and Munro [17]
present the Combined C Graph, a data structure specifically
designed to aid in graph-based defect discovery, while Ya-
maguchi et al. [35] present the code property graph for vul-
nerability discovery. Their work, which inspired our paper,
first employed a graph representation of code properties to
detect vulnerabilities in C code. Our work notably extends
their work by first demonstrating that similar techniques
can be employed to identify vulnerabilities in high-level,
dynamic scripting languages, making it applicable for the
identification of vulnerabilities in Web applications, and
second by adding call graphs, allowing for interprocedural
analysis.

Their idea was picked up by Alrabaee et al. [2], who use
a graph representation to detect code reuse. Their specific
goal in this is to ease the task of reverse engineers when
analyzing unknown binaries. The concept of using program
dependence graphs is also used by Johnson et al. [14], who
built their tool PIDGIN for Java. Specifically, they create
the graphs and run queries on them, in order to check
security guarantees of programs, enforce security during
development, and create policies based on known flaws.
Besides this more specific use in finding flaws, several works
have looked at PDGs for information-flow control, such
as [10, 8, 26].

8. Conclusion

Given the pervasive presence of PHP as a Web pro-
gramming language, our aim was to develop a flexible
and scalable analysis tool to detect and report potential
vulnerabilities in a large set of Web applications. To this end,
we built code property graphs, i.e., a combination of syntax
trees, control flow graphs, program dependence graphs, and
call graphs for PHP, and demonstrated that they work well
to identify vulnerabilities in high-level, dynamic scripting
languages.

We modeled several typical kinds of vulnerabilities aris-
ing from exploitable flows in PHP applications as traversals
on these graphs. We crawled 1,854 popular PHP projects
on GitHub, built code property graphs representing those
projects, and showed the efficacy and scalability of our
approach by running our flow-finding traversals on this large
dataset. We were able to observe that the number of reported
flows in a small selected subset of these projects, consist-
ing of purposefully vulnerable software, was tremendously
higher than in the other projects, thus confirming that our
approach works well to detect such flows. Additionally, we
also discovered well over a hundred unintended vulnerabil-
ities in the other projects.

We demonstrated that it is possible to find vulnerabilities
in PHP applications on a large scale in a reasonable amount
of time. Our code property graphs lay the foundation to build
many more sophisticated traversals to find other classes of
vulnerabilities by writing appropriate graph traversals, be
they generic or specific to an application. We make our tool
publicly available to give that possibility to researchers and
developers alike.

Acknowledgments

We would like to thank the reviewers for their helpful
comments. This work was supported by the German Min-
istry for Education and Research (BMBF) through funding
for the Center for IT-Security, Privacy and Accountability
(CISPA).

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley

[3]

[4]

[6]

[7]
[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN
0321486811.
S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi. SIGMA: A

semantic integrated graph matching approach for identifying reused
functions in binary code. Digital Investigation, 12:5S61-S71, 2015.
D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In Security and
Privacy, 2008 IEEE Symposium on, pages 387—401. IEEE, 2008.

J. Dahse and T. Holz. Simulation of built-in PHP features for precise
static code analysis. In 27st Annual Network and Distributed System
Security Symposium — NDSS 2014. The Internet Society, 2014.

J. Dahse and T. Holz. Static detection of second-order vulnerabilities
in web applications. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 989-1003, 2014.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Transactions
on Programming Languages and Systems (TOPLAS), 9(3):319-349,
1987.

S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries
over program traces. 2005.

J. Graf. Speeding up context-, object-and field-sensitive SDG gener-
ation. In 10th IEEE Working Conference on Source Code Analysis
and Manipulation (SCAM 2010), pages 105-114. IEEE, 2010.

S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language
for building system-specific, static analyses. 2002.
C. Hammer. Information Flow Control for Java.
Universitit Karlsruhe (TH), 2009.

Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. Securing
web application code by static analysis and runtime protection. In
Proceedings of the 13th international conference on World Wide Web,
WWW 2004, pages 40-52, 2004.

Y. Huang, F. Yu, C. Hang, C. Tsai, D. T. Lee, and S. Kuo. Verifying
web applications using bounded model checking. In Proceedings of
the International Conference on Dependable Systems and Networks,
DSN 2004, pages 199-208, 2004.

M. Johns, B. Braun, M. Schrank, and J. Posegga. Reliable protection
against session fixation attacks. In Proceedings of the 26th ACM
Symposium on Applied Computing (SAC 2011), pages 1531-1537.
ACM, 2011.

A. Johnson, L. Waye, S. Moore, and S. Chong. Exploring and
enforcing security guarantees via program dependence graphs. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 291-302. ACM, 2015.
N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool
for detecting web application vulnerabilities. In Security and Privacy,
2006 IEEE Symposium on, pages 6—pp. IEEE, 2006.

N. Jovanovic, C. Kruegel, and E. Kirda. Static analysis for detecting
taint-style vulnerabilities in web applications. Journal of Computer
Security, 18(5):861-907, 2010.

D. A. Kinloch and M. Munro. Understanding C programs using the
combined C graph representation. In Software Maintenance, 1994.
Proceedings., International Conference on, pages 172-180. IEEE,
1994.

E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: A client-
side solution for mitigating cross-site scripting attacks. In Proceedings
of the 2006 ACM Symposium on Applied Computing, pages 330-337.
ACM, 2006.

M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis as
database queries. In Proc. of Symposium on Principles of Database
Systems, 2005.

V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java
applications with static analysis. In Proceedings of the 14th USENIX
Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005.
USENIX Association, 2005.

M. Martin, B. Livshits, and M. S. Lam. Finding application errors
and security flaws using PQL: A program query language. In ACM
SIGPLAN Notices, volume 40, pages 365-383. ACM, 2005.

L. Munroe. PHP: a fractal of bad design. online, https://eev.ee/blog/
2012/04/09/php-a-fractal-of-bad-design.

PhD thesis,

https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design

(23]

(24]

[25]

[26]

(27]

(28]

[29]

[30]

0. Olivo, I. Dillig, and C. Lin. Detecting and exploiting second order
denial-of-service vulnerabilities in web applications. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 616-628. ACM, 2015.

S. Paul and A. Prakash. A framework for source code search using
program patterns. IEEE Transactions on Software Engineering, 20
(6):463-475, 1994.

T. Reps. Program analysis via graph reachability. Information and
Software Technology, 40(11):701-726, 1998.

G. Snelting, D. Gifthorn, J. Graf, C. Hammer, M. Hecker, M. Mohr,
and D. Wasserrab. Checking probabilistic noninterference using
JOANA. it-Information Technology, 56(6):280-287, 2014.

B. Stock and M. Johns. Protecting users against XSS-based password
manager abuse. In Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, pages 183—
194. ACM, 2014.

The PHP Group. Predefined variables. online, http://php.net/manual/
en/reserved.variables.php.

W3Techs. Usage of server-side programming languages for websites.
online, http://w3techs.com/technologies/overview/programming_
language/all.

G. Wassermann and Z. Su. Sound and precise analysis of web
applications for injection vulnerabilities. In ACM SIGPLAN Notices,
volume 42, pages 32-41. ACM, 2007.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

G. Wassermann and Z. Su. Static detection of cross-site scripting
vulnerabilities. In Proc. of International Conference on Software
Engineering, pages 171-180. IEEE, 2008.

M. Weiser. Program slicing. In Proc. of International Conference on
Software Engineering, 1981.

WhiteHat ~ Security. Website security — statistics report.
online, https://info.whitehatsec.com/rs/whitehatsecurity/images/
2015-Stats-Report.pdf, 2016.

Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. In Proceedings of the 15th USENIX Security
Symposium, 2006.

F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and
discovering vulnerabilities with code property graphs. In Security and
Privacy, 2014 IEEE Symposium on, pages 590-604. IEEE Computer
Society, 2014.

F. Yu, M. Alkhalaf, and T. Bultan. STRANGER: An automata-
based string analysis tool for PHP. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 154—157. Springer,
2010.

M. Zalewski. The Tangled Web: A Guide to Securing Modern Web
Applications. No Starch Press, San Francisco, CA, USA, Ist edition,
2011. ISBN 1593273886, 9781593273880.

C. Zapponi. GitHut. online, http://githut.info/.

http://php.net/manual/en/reserved.variables.php
http://php.net/manual/en/reserved.variables.php
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
https://info.whitehatsec.com/rs/whitehatsecurity/images/2015-Stats-Report.pdf
https://info.whitehatsec.com/rs/whitehatsecurity/images/2015-Stats-Report.pdf
http://githut.info/

