
TrustJS: Trusted Client-side Execution of JavaScript

David Goltzsche
TU Braunschweig, Germany
goltzsche@ibr.cs.tu-bs.de

Colin Wulf
TU Braunschweig, Germany

cwulf@ibr.cs.tu-bs.de

Divya Muthukumaran
Imperial College London, UK

d.muthukumaran@imperial.ac.uk

Konrad Rieck
TU Braunschweig, Germany

k.rieck@tu-bs.de

Peter Pietzuch
Imperial College London, UK

prp@imperial.ac.uk

Rüdiger Kapitza
TU Braunschweig, Germany

rrkapitz@ibr.cs.tu-bs.de

ABSTRACT
Client-side JavaScript has become ubiquitous in web applications
to improve user experience and reduce server load. However, since
clients are untrusted, servers cannot rely on the confidentiality or
integrity of client-side JavaScript code and the data that it oper-
ates on. For example, client-side input validation must be repeated
at server side, and confidential business logic cannot be offloaded.
In this paper, we present TRUSTJS, a framework that enables trust-
worthy execution of security-sensitive JavaScript inside commodity
browsers. TRUSTJS leverages trusted hardware support provided
by Intel SGX to protect the client-side execution of JavaScript, en-
abling a flexible partitioning of web application code. We present
the design of TRUSTJS and provide initial evaluation results, show-
ing that trustworthy JavaScript offloading can further improve user
experience and conserve more server resources.

Keywords
Trusted Computing, Trusted Clients, Intel SGX, JavaScript

1. INTRODUCTION
Web applications increasingly replace traditional desktop appli-

cations, mainly because developers gain instant deployability and
platform independence. With single-page applications [27], devel-
opers utilise client-side JavaScript code to provide a user experi-
ence similar to desktop applications. This resulted in a substan-
tial growth of JavaScript, manifesting for example in JavaScript
being the most popular language on GitHub for several years [2]
and Google enabling their crawlers to also handle JavaScript [18].

The success of JavaScript is founded in the ability to offload com-
putations to clients in a standardised, widely accepted fashion. Of-
floading has two advantages: Firstly, it minimises round trip times,
resulting in a better user experience. Secondly, service providers
can save costs as less resources are demanded from servers.

However, despite all these benefits, offloading code to clients has
a strong limitation: From the provider’s view, clients can never be
assumed to be trustworthy. As a consequence, computation results
from clients may be wrong, corrupted, or incomplete. To solve this,
client results are typically checked for consistency at the server,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSec’17, April 23 2017, Belgrade, Serbia
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4935-2/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3065913.3065917

which often requires recomputation [35]. An example for this is
input validation; server software repeats computations already per-
formed on client-side. Considering this on a global scale, this is
a massive waste of resources. Additionally, related projects [9, 1]
show that validation of input values on client and server side can be
error prone and introduce vulnerabilities.

Furthermore, the intellectual property (IP) of confidential Java-
Script code offloaded to the client cannot be protected. Compa-
nies may have decided against client-side computation because this
would require the disclosure of algorithms or business logic. For ex-
ample, banks might want to keep their scoring algorithms for credit
checks confidential. A contemporary approach to resolve this issue
is code obfuscation [14, 23], which is said to prevent theft, reverse
engineering or copyright infringements. However obfuscation has
been proven as insufficient [32, 13, 24].

These limitations, however, can be circumvented by exploiting
novel hardware extensions that enable trusted execution, such as
Intel SGX. The Intel Software Guard Extensions (SGX) consist of
a number of additional x86 instructions that allow the creation of
so-called enclaves. In these enclaves, hardware mechanisms pro-
tect the execution of code from other potentially privileged code,
such as the operating system, the kernel and drivers. Moreover,
SGX prevents certain classes of hardware-based attacks by utilis-
ing memory encryption and integrity checks.

SGX has recently been utilised for different client-side solutions
such as password stores [10, 25] and anti-cheat software [7]. Ad-
ditionally, it can enable secure execution of nearly or even totally
unmodified legacy applications [5, 34, 12, 8], help securing pub/-
sub systems [31] and coordination services [11]. However, none of
these works addresses client-side web applications enabling trusted
execution of JavaScript code within commodity browsers.

In this paper we present the TRUSTJS web development frame-
work. It allows the development of web applications that execute
trusted and untrusted standard client-side JavaScript code side by
side. This is achieved, by adding a trusted JavaScript engine to
a browser and protect it with SGX. Being transparently integrated
into Firefox as an add-on, both installation and usage is easy for end
users. For developers, TRUSTJS provides techniques to simplify
the process of writing trusted JavaScript. Additionally, TRUSTJS
isolates the execution of JavaScript in browser tabs at runtime, dis-
tinguishing between untrusted and trusted parts. We present an ini-
tial evaluation, which shows the benefits of TRUSTJS in terms of
latency and scalability, thus supporting our vision of a new way of
developing web applications.

2. BACKGROUND AND THREAT MODEL
In this section, we give details about Intel SGX, the core technol-

ogy behind TRUSTJS and introduce our assumed threat model.

© ACM, 2017. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version will be published in the proceedings of the 10th European Workshop on System Security 2017 (EuroSec’17).

http://dx.doi.org/10.1145/3065913.3065917

2.1 Intel SGX basics
In a nutshell, Intel SGX enables the protection of data and com-

putation in compartments called enclaves. Plaintext of enclave-
protected data is only available for computation inside the CPU
package and is guarded against unauthorised accesses by privileged
code or physical attackers. To achieve this, Intel SGX extends
the instruction set for recent x86 processors to enable the creation
and management of enclaves. Enclaves are associated with an iso-
lated logical memory range inside the address space of applications.
SGX protects the confidentiality and integrity of this range with
check sums and memory encryption. The logical addresses of the
enclave are mapped to pages, stored in a system-reserved memory
range called Enclave Page Cache (EPC).
Enclave development and interaction. Applications interact with
enclaves via ecalls and ocalls. These calls are defined by the devel-
oper on function granularity in the enclave description language.
Figure 1 shows the basic interaction pattern with enclaves: First,
the application creates the enclave from a binary. After that, ecalls
can be made into the enclave, and ocalls from the enclave; both
returning to the caller function after completion. Intel provides a
Software Development Kit (SDK) [22] for defining and handling
ecalls, ocalls and the enclave’s life cycle.

Enclave
Application

ecall
return return

ocall

enclave creation

trusted
execution

untrusted
execution

untrusted
execution

enclave destrucion

Figure 1: Basic interaction pattern between application and en-
clave with ecalls and ocalls.

Local and remote enclave attestation. A key concept of SGX is
attestation, which enables authentication of enclaves to a local or
remote party. It is based on SHA-256 digests called identities or
measurements and supported in two variants: MRENCLAVE, iden-
tifying a specific version of an enclave, and MRSIGNER, identify-
ing the creator of the enclave. Moreover, an attestation is local if
the enclave is authenticated to another enclave on the same plat-
form, whereas remote attestation extends this local mechanism to
allow a remote party called the challenger the authentication of
enclaves [4]. TRUSTJS heavily relies on this feature to create a
trusted channel between providers and enclaves on client machines,
as described in §4.2.

Both measurement variants are based on data structures called
reports containing both forms of enclave identities. While for lo-
cal attestation, reports are generated for and verified by arbitrary
enclaves, remote attestation relies on the Quoting Enclave (QE) is-
sued by Intel. The QE locally verifies reports and transforms them
into quotes, by adding a signature based on a key provisioned by
Intel. When the challenger receives the quote, she sends it to the
Intel-operated service called Intel Attestation Service (IAS), which
checks the signature and returns the result. On a positive result, the
challenger has successfully authenticated the remote enclave.

To perform a remote attestation, the challenger has to register
for the IAS once. He will be assigned a unique Service Provider ID
(SPID), which has to be transferred with every verification request.
Limitations of SGX. Despite all its benefits, the use of SGX im-
poses some limitations, that should be considered during system

design: first, applications running in enclaves have to be operating
system agnostic: by design, enclaves do not depend on mechanisms
usually provided by the operating system such as system calls and
memory management. Nevertheless, providing system calls in en-
claves is possible [5, 12, 34].

Second, the EPC is limited to 128 MB, a small fraction of mem-
ory that today’s applications consume. While page swapping is sup-
ported, recent publications have shown a higher memory demand
results in a severe performance penalty [5, 11]. Thus, the memory
demand of enclaves should be kept low. This also means, a system
deploying enclaves at clients instead of servers has more resources
available since the EPC is limited per machine.

2.2 SGX-aware threat model
We define three roles that interact when TRUSTJS is in operation:

The enclave builder, the user and the service provider. The enclave
builder creates the enclave and ships it with the browser add-on,
which is installed by the user who owns and controls a client ma-
chine. Both the user and service provider trust the enclave and we
assume they can check its publicly available implementation. The
service provider offers a web-based service and uses TRUSTJS for
trusted execution at the user’s machine. He wants to protect the
integrity of the JavaScript code and, in case of IP protection, also
the confidentiality. The user trusts the service provider, in terms
of the offered service being benign. However, he does not trust
the (possibly encrypted) JavaScript code, but relies on the enclave
for isolated and secure execution. This implies, JavaScript being
unable to break out of the enclave.

For the design of TRUSTJS we act on a threat model typical for
SGX enclaves: an attacker has the client machine under full control,
including the operating system and the hardware—with the excep-
tion of the CPU. However, we exclude denial-of-service (DoS) at-
tacks on enclaves from our threat model since the design of SGX al-
lows the host operating system (OS) to control enclave’s life cycles
anyway. That means, attackers can prevent or abort the execution
of enclaves, but should not gain any knowledge by doing so.

Furthermore, side-channel attacks [37, 36] based on vulnerabili-
ties of the application running inside the enclave are not of interest:
We assume all enclave software to be free of security-relevant bugs.
Finally, we assume the design and implementation of SGX itself,
including all cryptographic operations is secure and does not con-
tain any vulnerabilities.

3. DESIGN OF TRUSTJS
Running trusted and untrusted JavaScript side by side in a brow-

ser requires changes to its architecture. Keeping the threat model
described in § 2.2 in mind, we place an additional JavaScript inter-
preter inside an enclave and integrate it as a browser add-on. We
rely on Intel SGX due to its availability on current commodity x86
processors, which will most likely be supported by a major fraction
of future client machines. We refer to the SGX-protected JavaScript
engine as interpreter enclave.

The high-level architecture of TRUSTJS is shown in Figure 2:
A browser with the TRUSTJS add-on installed, having multiple in-
stances of the interpreter enclave (IE), each one associated with a
service provider (SP). TRUSTJS creates a trusted channel between
the service provider and its assigned enclave, enabling them to com-
municate integrity and confidentiality protected.

The interpreter enclave should be viewed as a trusted two-way
sandbox like Ryoan [21]: as in normal browsers, users trust the
interpreter, in terms of JavaScript code not being able to break out
of it. In addition, service providers assume that enclaves do not
accept other JavaScript which could leak secrets. Service providers

Browser tab1

IE3

Browser

Browser tab2

IE3
Browser tab3

IE3
SP3Trusted channel

SP2SP1Add-on

Figure 2: High Level Architecture of TrustJS; example with three
service providers (SP), each associated with an client-side inter-
preter enclave (IE) running inside the browser.

can load arbitrary JavaScript code into interpreter enclaves, as long
as the boundary between trusted and untrusted parts is on function
granularity. We refer to JavaScript functions loaded into the enclave
as trusted functions.

The add-on manages life cycles for multiple interpreter enclave
instances: when the user opens a new tab, an enclave is assigned
to it; when it is closed the enclave is destroyed. TRUSTJS uses an
enclave pool containing more enclaves than open tabs. Enclaves
are continuously created in the background, as the user opens new
tabs. Thus, enclave initialisation times do not affect user experi-
ence. TRUSTJS ensures that internal states of the interpreter en-
clave can never be leaked to other providers, neither by reusing en-
clave instances nor by loading potentially malicious code by other
parties. This is achieved by assigning new enclaves, if a provider
change is detected within a tab. Also, the interpreter enclave is
designed to load code signed by one single provider only.

For loading JavaScript functions into the enclave, service provi-
ders can choose between authenticated and confidential code, by
either signing or additionally encrypting parts of the HTML files
they deliver (see §5). As dynamically generated JavaScript cannot
by authenticated, TRUSTJS does not support the commonly mis-
used eval() function. Also, since encrypted JavaScript cannot
be inspected, TRUSTJS offers policies, allowing users to decide for
every website whether confidential JavaScript is enabled. This will
influence the functionality of websites, but empowers users to pre-
vent untrusted providers from executing confidential code on their
machines. In addition, TRUSTJS guarantees the integrity and/or
confidentiality of return values. Instead of returning plain values,
JSON objects are returned. These contain the original return value,
either in plaintext or encrypted as well as a Keyed-Hash Message
Authentication Code (HMAC) over the data.

4. IMPLEMENTATION OF TRUSTJS
This section gives details about the implementation of TRUSTJS

on a lower level. This comprises the client-side components (§4.1)
and the remote attestation of interpreter enclaves (§4.2).

4.1 TrustJS client-side components
TRUSTJS consists of three components, as depicted in Figure 3:

the TRUSTJS add-on installed in a browser, an untrusted enclave
bridge and the interpreter enclave. All components are running
in the browser process context, thus circumventing expensive IPC
calls and being the easiest approach with Intel SGX. The com-
ponents are interconnected with different mechanisms, either pro-
vided by the Mozilla Add-on SDK [28] or the Intel SGX SDK [22]:
the browser and the add-on use port objects to communicate via
asynchronous messages. Since the add-on and bridge are written in
different languages we use js-ctypes [29] to create an appropriate
interface between JavaScript and native C code. The bridge uses
ecalls to enter the enclave and handles ocalls originating from it.

HTML page

Browser process

Interpreter
enclave

injected
content script ports

ecalls
ocalls

JS Engine

JS Engine

Add-on Bridge

trusted
JavaScript
execution

untrusted
JavaScript
execution

js-ctypes

HTML document

Figure 3: The components of TrustJS at client-side, showing un-
trusted components in red and trusted components in green.

In the following paragraphs, we describe all components in more
detail and provide an overview of their tasks.
TRUSTJS browser add-on. The add-on is responsible for con-
necting the rest of TRUSTJS’s components with the browser and
initiating the transfer of trusted functions into the enclave. This
is achieved by injecting a content script into pages loaded by the
browser. The script finds all HTML script tags with trustjs
attributes (see § 5) in the current document. As these contain signed
or encrypted JavaScript code, they are transferred into the enclave
for signature checks and/or decryption and later execution. Further-
more, the original trusted scripts are replaced with proxies that dele-
gate calls to the implementations now residing in the enclave. This
includes the handling of function parameters and return values.
Untrusted enclave bridge. The untrusted enclave bridge is a bi-
nary shipped with the add-on, implementing functions called by the
extension. It is completely stateless, simply translating calls from
the extension into ecalls as well as forwarding ocalls. In essence,
the bridge exposes the interface of the enclave to the browser. Note,
that the bridge cannot be omitted by letting the add-on call enclave
functions directly, as the bridge needs to invoke SGX instructions
necessary to start, enter and destruct the interpreter enclaves.
Interpreter enclave. The implementation of the interpreter en-
clave is also shipped with the add-on. Its purpose is the trusted
execution of JavaScript. Our prototype is based on MuJS [6], a
lightweight JavaScript interpreter that is fully compatible to version
ES5 of the ECMA-262 standard [17]. Compared to more sophisti-
cated interpreters like V8 [19] or SpiderMonkey [30], MuJS has a
relatively small codebase of less than 14 KLOC and does not sup-
port just-in-time compilation. Both properties ease the process of
porting it into the enclave and lead to a small trusted computing
base, which improves security.

4.2 Remote attestation and key exchange
Service providers need a public key from and a shared secret with

an assigned interpreter enclave for two crucial tasks: The signing
and/or encryption of trusted functions and the verification/decryp-
tion of return values. In order to trust results, service providers
need to ensure the aforementioned public key has been generated
in an interpreter enclave they trust. Assuming the code of the inter-
preter enclave has been released as open source, service providers
can check the implementation and maintain a list of hashes of trust-
worthy enclaves. By using compilation instructions by the enclave

builder for reproducible and verifiable builds [15], these hashes can
be compared with the enclave measurement MRENCLAVE.

To establish trust between a service provider and an interpreter
enclave, a remote attestation is performed. Depending on the use
case, this happens before verifying return values or deploying con-
fidential code. As described in § 2.1, the attestation is based on
reports and quotes. By design, both report and quote can contain
512 bits of arbitrary data, which is included in all cryptographic
operations performed on these data structures. We use this field to
embed a hash of an ephemeral public key created during enclave
start. By doing so, service providers can receive a public key from
interpreter enclaves and a proof, that it has been generated by an
enclave they trust.

The process for remote attestation and key exchange works as
follows: the service provider embeds his SPID (obtained from In-
tel, see §2.1) and a target URL for the final quote into his document.
TRUSTJS persistently caches SPIDs and URLs associated with pro-
viders to speed up setup time for future requests. When the user
opens the browser (or a new tab), the add-on assigns an existing
interpreter enclave, which has already generated an ephemeral key
pair. As the user visits the providers website, the SPID is obtained
from either the document or the cache. Subsequently, the add-on
issues an ecall, creating a report, containing a hash of the generated
public key. Upon return, the ecall discloses two data structures: the
aforementioned report and the public key itself. Via another ecall to
the QE, a quote based on the report and SPID is created. Note, that
the quote also contains the hash of the public key and is verifiable
by Intel. Subsequently, the TRUSTJS add-on sends both the quote
and the public key to the URL defined by the service provider.

Every service provider operates a web service, which receives
both the quote and public key. After the quote has been sent to
the IAS and a response has arrived, the provider verifies three prop-
erties: (i) the IAS response is positive (ii) the public key matches
the hash embedded in the quote (iii) the MRENCLAVE value in the
quote matches a known hash. If these are fulfilled, the provider is
certain a trustworthy environment has been created, the public key
was generated in it and the corresponding private key has never left
it. He generates a secret key, encrypts it with the public key and
sends it back to the client.

After completion, the client uses the shared secret to add HMACs
to or perform encryption on results of the trusted JavaScript func-
tions. In contrast, the service provider uses the verified public key
to encrypt or sign JavaScript code. In order to avoid additional
message overhead, this message exchange is embedded in HTTP
requests and responses that need to happen anyway for web appli-
cations to work (see Figure 4).

5. APPLICATION DEVELOPMENT
With the TRUSTJS framework, new possibilities are introduced

to web developers as clients can execute JavaScript in a trusted
way. Hence, a new programming paradigm is necessary. Develop-
ers should view client-side JavaScript as a central and trusted part
of their infrastructure providing reliable computing resources. To
allow this, developers need to perform additional steps: meta infor-
mation has to be provided, trusted scripts have to be annotated and
signed or encrypted. This section gives an overview about these
steps and shows how TRUSTJS implements them.

For the remote attestation of the interpreter enclave (see §4.2)
to work, developers have to provide additional information: first,
clients need to know the SPID and a quote target URL for remote
attestation (see § 2.1). These have to be embedded by developers
as shown in Listing 1. When a page is loaded, the TRUSTJS add-on
extracts this information.

<meta name="trustjs:spid" content="BF..40"/>
<meta name="trustjs:url"

content="https://host/quote"/>

Listing 1: Meta information embedded by service providers for
remote attestation.

<script trustjs-encrypt="yes">
/* @exposed confidentialFunction 1 */
function hiddenFunction(y) { ...
}
function confidentialFunction(x) { ...
hiddenFunction(x);

}
</script>
<script>var a = confidentialFunction(42);</script>

Listing 2: Trusted JavaScript code before encryption.

Second, developers have to annotate JavaScript code for trusted
execution. TRUSTJS implements this by evaluating additional at-
tributes of script tags: trustjs-auth for integrity-protected
and trustjs-encrypt for confidential code. The following
listings illustrate this by an example for two confidential functions.
Listing 2 shows two HTML script tags before encryption: while
the first one will be executed inside the interpreter enclave, the sec-
ond one will be executed by the browsers default engine and call
the trusted function. The @exposed annotation is essential and
used by the interpreter enclave for making only developer-defined
exposed functions callable: Here, hiddenFunction is not ac-
cessible from untrusted JavaScript. The number in the annotation
denotes the number of arguments the function takes.

After encryption, the content looks like shown in Listing 3: The
content of the annotated tag is encrypted and embedded as a base64-
encoded string, while the calling, untrusted function is untouched.
In fact, it will call a proxy function generated by TRUSTJS which
matches name and arguments of the original function. Note, that
a proxy is only generated for exposed functions and the interpreter
enclave prevents calling other functions than these. Additionally,
we implemented an HTML generator, which can be used by service
providers to generate partly encrypted HTML documents based on
these annotations.

<script trustjs-encrypt="yes"
trustjs-blob="X6YXkazAVA7oBZYC..9CkX0Tq9I="/>

<script>var a = confidentialFunction(42);</script>

Listing 3: Trusted JavaScript after encryption with encrypted
base64-encoded script.

6. EVALUATION
In this section, we demonstrate the benefits that both user and

service provider gain from using TRUSTJS, when developers can
adapt their approach to save resources. To evaluate the impact
of this adoption, we create a setup involving three network enti-
ties (client, server and IAS) and explore latency between client
and server as well as the scalability of the server software. For
the client, we use a typical client machine: a laptop with an i7-
6500U CPU. The server is implemented in Node.js and runs on a
t2.medium Amazon EC2 [3] instance (2 vCPUs, 4 GB RAM), de-
ployed in the us-east-1a region. The IAS is a web service operated
by Intel. The average ping round trip time between client and server
is 99 ms, between server and IAS 25 ms.

We create a simple web application, that repeatedly performs n
calculations c1, . . . ,cn on client-side. To show the positive impact
of TRUSTJS, we require the results to be checked before giving
the client a new task (i.e. ci−1 has to be verified before ci is per-

formed). This requirement allows the TRUSTJS application to do
calculations locally and send the combined results to the server. We
impose this additional requirement to show that TRUSTJS enables
developers to re-think their architectures. In a real world applica-
tion, this can for example be a multi-step form whose input has to
be verified before giving new information to users.

As a place holder for general computations, we use an empty Ja-
vaScript loop with 5000 iterations. When not using TRUSTJS, this
loop is executed in the default engine of the browser. On contrary,
when using TRUSTJS, the loop is executed within the interpreter
enclave. In the following, we explore the latency and scalability
of applications using TRUSTJS and compare these properties to
traditional web applications not relying on TRUSTJS. We do not
indicate errors because of negligibility.
Latency. Web applications easily suffer from high latencies, as it
is a crucial value, potentially having detrimental effects on user ex-
perience. A traditional implementation without TRUSTJS increas-
ingly builds up latency, as can be inferred from Figure 4a. In con-
trast, as Figure 4b shows, using TRUSTJS can save round trips:
The client is trustworthy, thus, multiple server side recalculations
can be replaced with one single HMAC verification. Both figures
show three points in time t0, t1 and t2 that represent three intervals:

I1 = [t0, t1] I2 = [t1, t2] I3 = [t0, t2] = I1 + I2

Client

calc2

Server
HTTP GET

calc1

calc1

HTML

t1

t2

t0

HTTP POST

Result

HTTP POST

Result

calc2

(a) Traditional web application with server-side re-calculations.

Client Server IAS

Quote + public key Quote

OK

t1

Enclave start

HTTP GET

HTML

HTTP POST

Hash check

calc2

t2

Quote
verification

Secret key generation
Preparation of HTML document

HMAC verification

calc1

HMAC generation

Encrypted secret key

Result + HMAC

t0

(b) Web application using TrustJS with single server-side HMAC
check, SPID and POST URL are assumed to be cached.

Figure 4: Latency build-up of web applications with and without
TrustJS, number of calculations n = 2.

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10

A
pp

lic
at

io
n
 r

u
n
 t

im
e

[m
s]

Number of calculations

no TrustJS
TrustJS

(a) Run time I3 of web applica-
tions in dependency of the num-
ber of calculations n.

 0

 20

 40

 60

 80

 100

1 100 200 300 400 500 600

S
er

ve
r

C
PU

 u
sa

ge
 [

%
]

Number of clients

no TrustJS
TrustJS

(b) Server CPU usage in depen-
dency of client count, number of
calculations n = 4.

Figure 5: Comparison of latency and scalability properties of web
applications with and without TrustJS.

I1 is the page load time perceived by the user, which is larger for
TRUSTJS applications, as it includes a round trip for remote attesta-
tion. In contrast, the application run time I2 depends on the number
of calculations performed and thus grows faster for applications not
using TRUSTJS. The number of calculations n of our sample appli-
cation is pivotal for the total application runtime I3.

With TRUSTJS the average value of I1 is 343 ms, without it is
109 ms. Figure 5a details the total runtime in dependency of the
number of calculations n for both implementations. It shows that
our sample application using TRUSTJS experiences shorter laten-
cies compared to a traditional implementation when n > 3.
Scalability. In web applications with many users, servers can easily
become the bottle neck. We explore the scalability of web servers
by observing the CPU utilisation when increasing the number of
clients. Figure 5b shows the single core server load for a growing
number of simulated clients. It shows, that executing most of the ap-
plication logic on clients only with TRUSTJS can reduce the server
load significantly: Without TRUSTJS, the server reaches full CPU
utilisation when serving 250 clients. When relying on TRUSTJS,
however, this point is reached at 700 clients.

7. RELATED WORK
Although it was initially assumed that only small tailored appli-

cations would be executed inside enclaves [20] such as [10, 25, 7],
a recent trend is to consider enclaves as a generic isolation environ-
ment for arbitrary applications: VC3 [33] uses enclaves to secure
MapReduce jobs; Haven [8] places a library OS inside an enclave
for running unmodified Windows applications, Graphene [12] fol-
lows a similar approach for legacy Linux applications. SCONE [5]
and PANOPLY [34] also enable Linux applications in enclaves, but
minimise the TCB by delegating system calls to the host OS.

MiniBox [26] is a general hypervisor-based sandbox for PaaS
platforms. Ryoan [21] is an SGX-based distributed sandbox for
untrusted platforms such as machine learning services. Both ap-
proaches solve a similar problem as TRUSTJS with two-way sand-
boxing that can run on untrusted systems and can execute code de-
fined by other parties.

Ripley [35] addresses the problem of untrusted clients by auto-
matically replicating the execution of client JavaScript on servers.
Although this approach can detect malicious clients, computational
resources cannot be saved at server-side. CRYPTON [16] intro-
duces a trusted kernel on client-side providing memory encryption
and trusted I/O, but has no capabilities of trusted execution. Auto-
FBI [39] spawns new browser instances for security relevant web-

sites, which is to some extend a similar approach to our multiple
interpreter enclaves. In contrast to TRUSTJS, these solutions do
not rely on trusted execution mechanisms as for example provided
by SGX and thus can only provide inferior security.

Finally, there are systems that could benefit from TRUSTJS’s
contributions. Maygh [38] for example is a JavaScript-based con-
tent delivery network built on top of untrusted clients. Trust issues
are solved by comparing hashes for files being distributed. The
trusted execution of JavaScript could help this approach.

8. CONCLUSION AND FUTURE WORK
We have presented TRUSTJS, a novel framework that enables

trustworthy execution of client-side JavaScript code inside com-
modity browsers. TRUSTJS allows service providers to save re-
sources and developers to create better user experiences. We showed
that with TRUSTJS, developers can offload computation, resulting
in users experiencing lower latencies when they interact frequent
enough and servers being able to handle more clients. Still, the
extent of saved resources is depended of the use case.

In order to achieve better performance by just-in-time compila-
tion and provide stronger isolation, we plan to use a more sophis-
ticated JavaScript engine for the interpreter enclave, for example
V8 [19]. Also, we want to provide richer functionality inside the
enclave by supporting parts of the NodeJS API.

9. REFERENCES
[1] M. Alkhalaf, A. Aydin, and T. Bultan. Semantic differential

repair for input validation and sanitization. ISSTA, 2014.
[2] Alyson La, GitHub. Language Trends on GitHub.

https://github.com/blog/2047-language-trends-on-github,
August 2015.

[3] Amazon.com, Inc. Amazon Elastic Compute Cloud (EC2).
https://aws.amazon.com/ec2, 2017.

[4] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative
technology for CPU based attestation and sealing. HASP,
2013.

[5] S. Arnautov, B. Trach, F. Gregor, T. Knauth, et al. SCONE:
Secure linux containers with Intel SGX. OSDI, 2016.

[6] Artifex Software, Inc. http://mujs.com/, 2016.
[7] E. Bauman and Z. Lin. A Case for Protecting Computer

Games With SGX. SysTEX, 2016.
[8] A. Baumann, M. Peinado, and G. Hunt. Shielding

Applications from an Untrusted Cloud with Haven. OSDI,
2014.

[9] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. N.
Venkatakrishnan. NoTamper: Automatic Blackbox Detection
of Parameter Tampering Opportunities in Web Applications.
CCS, 2010.

[10] H. Brekalo, R. Strackx, and F. Piessens. Mitigating Password
Database Breaches with Intel SGX. SysTEX, 2016.

[11] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt,
M. Lorenz, C. Fetzer, P. Pietzuch, and R. Kapitza.
SecureKeeper: Confidential ZooKeeper using Intel SGX.
Middleware, 2016.

[12] Chia-Che Tsai. https://github.com/oscarlab/graphene, 2017.
[13] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert.

ZOZZLE: Fast and Precise In-Browser JavaScript Malware
Detection. USENIX Security, 2011.

[14] CuteSoft. https://javascriptobfuscator.com/, 2016.
[15] X. de Carné de Carnavalet and M. Mannan. Challenges and

implications of verifiable builds for security-critical

open-source software. ACSAC, 2014.
[16] X. Dong, Z. Chen, H. Siadati, S. Tople, P. Saxena, and

Z. Liang. Protecting sensitive web content from client-side
vulnerabilities with CRYPTONS. CCS, 2013.

[17] ECMA International. Standard ECMA-262 - ECMAScript
Language Specification. 5.1 edition, June 2011.

[18] Google Inc. Understanding web pages better.
https://webmasters.googleblog.com/2014/05/
understanding-web-pages-better.html, May 2014.

[19] Google Inc. V8. https://developers.google.com/v8/, 2017.
[20] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and

J. Del Cuvillo. Using Innovative Instructions to Create
Trustworthy Software Solutions. HASP, 2013.

[21] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: a
distributed sandbox for untrusted computation on secret data.
OSDI, 2016.

[22] Intel Corp. https://01.org/intel-software-guard-extensions,
2016.

[23] JScrambler. https://jscrambler.com/, 2016.
[24] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle:

De-cloaking internet malware. SP, 2012.
[25] K. Krawiecka, A. Paverd, and N. Asokan. Protecting

Password Databases using Trusted Hardware. SysTEX, 2016.
[26] Y. Li, J. M. McCune, J. Newsome, A. Perrig, B. Baker, and

W. Drewry. Minibox: A two-way sandbox for x86 native
code. ATC, 2014.

[27] M. Mikowski and J. Powell. Single Page Web Applications:
JavaScript End-to-end. Manning Publications Co.,
Greenwich, CT, USA, 1st edition, 2013.

[28] Mozilla Corporation. Add-on SDK.
https://developer.mozilla.org/Add-ons/SDK, 2017.

[29] Mozilla Foundation. js-ctypes.
https://developer.mozilla.org/docs/Mozilla/js-ctypes, 2017.

[30] Mozilla Foundation. SpiderMonkey.
https://developer.mozilla.org/docs/SpiderMonkey, 2017.

[31] R. Pires, M. Pasin, P. Felber, and C. Fetzer. Secure
Content-Based Routing Using Intel Software Guard
Extensions. Middleware, 2016.

[32] K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient
detection and prevention of drive-by-download attacks.
ACSAC, 2010.

[33] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. VC3: Trustworthy
Data Analytics in the Cloud Using SGX. SP, 2015.

[34] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. PANOPLY:
Low-TCB Linux Applications With SGX Enclaves. NDSS,
2017.

[35] K. Vikram, A. Prateek, and B. Livshits. Ripley:
automatically securing web 2.0 applications through
replicated execution. CCS, 2009.

[36] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza.
AsyncShock: Exploiting Synchronisation Bugs in Intel SGX
Enclaves. ESORICS, 2016.

[37] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems.
SP, 2015.

[38] L. Zhang, F. Zhou, a. Mislove, and R. Sundaram. Maygh:
Building a CDN from client web browsers. EuroSys, 2013.

[39] M. Zohrevandi and R. A. Bazzi. Auto-FBI: a user-friendly
approach for secure access to sensitive content on the web.
ACSAC, 2013.

https://github.com/blog/2047-language-trends-on-github
https://aws.amazon.com/ec2
http://mujs.com/
https://github.com/oscarlab/graphene
https://javascriptobfuscator.com/
https://webmasters.googleblog.com/2014/05/understanding-web-pages-better.html
https://webmasters.googleblog.com/2014/05/understanding-web-pages-better.html
https://developers.google.com/v8/
https://01.org/intel-software-guard-extensions
https://jscrambler.com/
https://developer.mozilla.org/Add-ons/SDK
https://developer.mozilla.org/docs/Mozilla/js-ctypes
https://developer.mozilla.org/docs/SpiderMonkey

	Introduction
	Background and Threat Model
	Intel SGX basics
	SGX-aware threat model

	Design of TRUSTJS
	Implementation of TRUSTJS
	TrustJS client-side components
	Remote attestation and key exchange

	Application development
	Evaluation
	Related Work
	Conclusion and Future Work
	References

