
— Technical Report —

Torben: Deanonymizing Tor Communication
using Web Page Markers

Daniel Arp, Fabian Yamaguchi, and Konrad Rieck
University of Göttingen, Germany

Report No. IFI-TB-2014-01

Technical Reports of the
Institute of Computer Science

University of Göttingen
ISSN 1611-1044

December 2014

University of Göttingen
Institute of Computer Science
Goldschmidtstr. 7
37077 Göttingen
Germany

Phone: +49 551 39–172000
Fax: +49 551 39–14403
E-Mail: office@cs.uni-goettingen.de
WWW: www.ifi.informatik.uni-goettingen.de

Torben: Deanonymizing Tor Communication
using Web Page Markers

Daniel Arp, Fabian Yamaguchi, and Konrad Rieck
University of Göttingen

Göttingen, Germany

Abstract

The Tor network has established itself as de-facto standard for anonymous commu-
nication on the Internet, providing an increased level of privacy to over a million users
worldwide. As a result, interest in the security of Tor is steadily growing, attracting
researchers from academia as well as industry and even nation-state actors. While various
attacks based on traffic analysis have been proposed, low accuracy and high false-positive
rates in real-world settings still prohibit their application on a large scale. Instead, the few
known cases of deanonymization have been reported to rely on vulnerabilities in browser
implementations and cannot be considered weaknesses in Tor itself.

In this paper, we present Torben, a novel deanonymization attack against Tor. Our
approach is considerably more reliable than existing traffic analysis attacks, simultaneously
far less intrusive than browser exploits. The attack is based on an unfortunate interplay
of technologies: (a) web pages can be easily manipulated to load content from untrusted
origins and (b) despite encryption low-latency anonymization networks cannot effectively
hide the size of request-response pairs. We demonstrate that an attacker can abuse this
interplay to design a side channel in the communication of Tor, allowing short web page
markers to be transmitted and exposing the web page a user visits over Tor. In an empirical
evaluation with 60,000 web pages, our attack enables detecting these markers with an
accuracy of over 91% and no false positives.

1 Introduction

The Tor network is one of the largest efforts to provide anonymity and privacy on the Internet.
The network implements a low-latency anonymity service based on the concept of Onion
Routing [7, 33]. The network consists of over 6,000 relay nodes worldwide that enable its
users to relay communication through a circuit of these nodes, for example, to anonymously
express their opinion or circumvent digital censorship. As of today, Tor is used by over a
million users and, in comparison to related projects such as JAP [2, 17] and I2P [15, 19], can
be considered the de-facto standard for anonymous communication on the Internet.

With the increasing use of Tor in practice, research on attacks against this service have
gained considerable attention. A large body of work has studied passive attacks based on

1

traffic analysis, most notably website fingerprinting and traffic confirmation attacks. The
former enable an attacker to detect patterns indicative for web pages in Tor traffic [e.g.,
3, 11, 25, 34]. Although these approaches provide good results in closed-world settings, in
practice they suffer from high false-positive rates and unstable patterns due to changing
web content. Traffic confirmation attacks on the other hand are not limited to web traffic
but require an attacker who is able to eavesdrop both ends of a communication over a long
period of time [e.g., 6, 21, 31, 38]. A second strain of research has thus considered active
attacks against the Tor network, such as path-selection attacks based on network congestion
[e.g., 9, 16, 24] and traffic watermarking using packet delays [e.g., 12, 13, 35, 37]. While these
techniques provide a more accurate and faster deanonymization, they involve a significant
effort for the adversary, requiring attacker control at different locations of the network. As a
result, the few known cases of deanonymization of Tor have been reported to instead make
use of advertisement networks or rely on vulnerabilities in browser implementations [29, 30]
and are thus unrelated to insecurities of Tor in general.

In this paper, we present Torben, a novel deanonymization attack against Tor that is
significantly more reliable than traffic analysis attacks but far less intrusive than browser
exploits. In contrast to other active attacks, Torben operates entirely on the application layer
and does not require Tor nodes or routers to be controlled by the adversary. The attack is
based on an unfortunate interplay of technologies: First, web pages can often be manipulated
to load dynamic content from untrusted origins, for example, using advertisements or user-
provided content. Second, despite encryption, low-latency anonymization networks cannot
effectively hide the size of request-response pairs in web traffic. We show that an attacker
can abuse this interplay to design a side channel in the communication of Tor. This side
channel enables the transmission of short web page markers that expose the web page a user
visits to an observer between the Tor client and the entry node. Although it is well-known
that active web content allows to track the visitors of web pages, we are the first to show that
it can be used to deanonymize Tor users in a short period of time.

We demonstrate the efficacy of our attack in different experiments with real-world Tor
traffic. We conduct a comparative closed-world evaluation with the top 100 web pages
from the Alexa ranking, where Torben significantly outperforms website fingerprinting
attacks [3, 11, 25]. In an open-world evaluation with 60.000 web pages, our attack enables
identifying marked web pages with over 91% accuracy and no false positives, demonstrating
the reliability of the proposed side channel. Finally, we conduct a live experiment with 4
users, each visiting web pages over Tor for roughly two hours. In this experiment, the Torben
attack allows identifying 91% of the marked web pages under real-world conditions.

Our experimental results demonstrate the severe effect of the proposed deanonymization
attack against Tor. While previous work on website fingerprinting already indicates a risk
of exposing web pages through traffic patterns, our work finally shows that using an active
attack, these patterns can be identified with high accuracy and very few false alarms. As a
consequence, there is an urgent need for defenses in anonymization services protecting users
from active attacks at the application layer.

2

In summary, our contributions are the following:

• We present a novel side channel in Tor communication. By issuing HTTP requests
from the user’s browser, an attacker is able to induce distinct patterns observable in
encrypted traffic.

• We demonstrate that this side channel can be used to perform a novel deanonymization
attack against Tor, allowing us to transmit web page markers exposing the page visited
by a user.

• Finally, we show that these web page markers can be accurately detected in real Tor
traffic with high accuracy by combining techniques from signal processing and machine
learning.

The remainder of the paper is organized as follows: In Section 2 we provide background
information on the Tor network and outline the attack scenario. We continue to describe the
Torben attack in Section 3 and evaluate its efficacy in Section 4. Related work is discussed in
Section 6 and Section 7 concludes the paper.

2 Background

Before presenting our deanonymization attack and discussing details of how to transmit data
through the underlying side channel, we need to briefly review the basics of the Tor network
(Section 2.1) and define the attack scenario we are considering (Section 2.2).

2.1 The Tor Network

<HTML>
<BODY>

Tor Client Entry node Exit node

Tor network
Implantation of
web page marker

e.g., HTTP redirects
or JavaScript code in
an advertisement

iFrame

Detection of marker

Ad

Figure 1: Attack scenario: A web pager marker is implanted using embedded or user-
provided content, such as an advertisement or an image link. The marker induces a traffic
pattern visible at the entry node, for example, using a chain of HTTP redirects or JavaScript
code generating HTTP requests.

The Tor network [7] is a low-latency anonymization network whose purpose is to protect
the privacy of its users by obfuscating their network traffic. This is done by tunneling user
traffic through arbitrary paths in the Tor network which consist of multiple hops (Tor relays)
that run the Tor software and are operated by volunteers. The security of Tor is based on the

3

use of strong encryption and the large number of relays that can be used to establish a path,
thus significantly lowering the ability of an attacker to easily eavesdrop a communication or
link sender and receiver.

A user who wants to establish a connection to a server through Tor has to run a Tor
client on his computer which will first select a path through the Tor network. A path usually
consists of three Tor nodes: An entry node, a middle node and an exit node. The client creates
a circuit by incrementally negotiating symmetric session keys with each of the selected Tor
nodes on the path. After establishing a circuit, the user can send data over the Tor network
using fixed size Tor cells which are multi-layer encrypted with the previously negotiated
session keys. Each relay node on the path then removes one layer of encryption while the cell
is forwarded to its destination. A circuit can transport multiple TCP streams, while multiple
circuits can be multiplexed over a connection between two Tor relays.

The Tor nodes communicate with each other using TLS which ensures that the cells always
arrive in the correct order they were sent. Furthermore, each relay node only knows its
successor and predecessor but not the complete path. Therefore, Tor still provides anonymity
even if a local attacker controls one node in the circuit, since she is still unable to link both
parties of a communication. Moreover, each circuit is only used for 10 minutes until a new
circuit is created, thereby limiting the ability of an adversary to discover and monitor a circuit
over a longer time frame.

2.2 Attack Scenario

For our attack, we consider a scenario that involves an active attacker. We assume that, first,
this attacker is able to monitor the encrypted communication between a Tor client and the
entry node, and, second, she is able to embed markers in a web page of interest. An overview
of this attack scenario is depicted in Figure 1.

To illustrate this scenario further, let us consider a totalitarian regime or law enforcement
agency that wants to determine whether a particular user visits a certain web page, despite
the fact that Tor is being used to anonymize the communication. Clearly, this attacker can
be expected to be capable of observing the encrypted network communication between the
user’s browser and the Tor entry node. However, this alone is a vast underestimation of
her capabilities, as it considers a passive attacker. It is reasonable to assume that the user’s
browser may be exposed to attacker-provided web content at some point throughout the
browsing session. This content may be delivered through a multitude of vectors. Based on
the chosen vector, we consider the following two variants of the attack scenario:

• Remote markers. In this scenario, the attacker exploits the fact that web pages often
embed content from different origins, some of which might be controlled by the
attacker. For example, the attacker may be able to host an advertisement on the web
page via an advertisement network or reference an image located at a third-party
server. Furthermore, message boards and social networks provide many opportunities
to remotely embed markers into a web page.

4

• Local markers. In this scenario, the attacker is able to locally inject content into a web
page. For example, an intelligence agency may manipulate the content of a web page
directly at the server or modify outgoing data to implant the marker. Similarly, a more
subtle attacker may exploit vulnerabilities in the code of a web page to add a local
marker, for instance, using stored cross-site scripting.

Regardless of the type of the web page marker, attacker-provided content is loaded in
the user’s browser and can be used to induce a traffic pattern in the Tor communication, for
example, through JavaScript code generating HTTP requests or a chain of HTTP redirects.
This pattern can be detected in the encrypted traffic between the Tor client and the entry
node, ultimately enabling an adversary to deanonymize the visitors of marked web pages.

3 A Side-Channel Attack on Tor

A fundamental limitation of low-latency anonymization networks is that they cannot ef-
fectively hide the sizes and order of relayed packets. For users browsing web pages via
Tor, this means that HTTP request and response sizes directly influence the stream of TLS
records observed between the Tor client and the entry node. Unfortunately, this setting can
be exploited by an attacker. If the user accesses attacker-controlled content, such as JavaScript
code or an embedded iFrame, the attacker gains partial control over the stream of request
and response sizes.

The overall idea of our attack is to leverage this control to carry out a side-channel
attack by creating distinct communication patterns in the encrypted data stream that can be
effectively detected using machine learning techniques. While this idea is simple at core,
applying it to construct a successful attack requires careful engineering of a number of
different components. In particular, the following four challenges need to be addressed:

• Preprocessing of network traces. Network traces need to be preprocessed and trans-
formed into a robust representation suitable for analysis of request and response sizes
(Section 3.1).

• Side channel design. A reliable side channel needs to be designed that allows short
messages to be transmitted to an attacker observing the encrypted data stream of Tor
(Section 3.2).

• Transmission of web page markers. Markers need to be transmitted using the side
channel, such that the visit of a marked web page induces a distinct pattern in the
encrypted traffic (Section 3.3).

• Detection of web page markers. Finally, a method for automatic detection of these web
page markers is required that enables identifying individual markers in real network
traces (Section 3.4).

In the following sections, we discuss in detail how we addressed each of these challenges
and provide background information on involved protocols as well as empirical evidence
that support our design decisions where required.

5

3.1 Preprocessing of Network Traces

The success of traffic analysis attacks critically depends on the choice of a suitable represen-
tation of observed network communication. With this goal in mind, we preprocess network
traces by leveraging inherent properties of the Tor protocol and the protocols it depends on,
thus allowing us to remove noise sources and highlight those properties of network traffic
that are controllable by the attacker. The key insight our preprocessing scheme is based on,
is that by controlling the size of HTTP requests and responses, we do not gain control over
the size of IP packets or TLS records but only over the amount of data transferred from one
change of direction to the next. We devise a representation emphasizing this aspect of the
record stream in a two-step procedure outlined in the following.

3.1.1 TCP Stream Reassembly

All Tor communication takes place via Tor cells encapsulated in TLS records (see Section 2).
Regardless of this, the vast majority of known traffic analysis attacks on Tor operate directly
on raw sequences of IP packets. While HTTP communication relayed by the Tor network
may influence these sequences, they are distorted by several noise sources that needlessly
complicate analysis. In particular, delayed or dropped IP packets cause the transport layer to
issue re-transmissions of packets. Moreover, packets may be re-ordered making it hard to
associate requests with responses. Finally, several Tor connections are usually operated in
parallel which appear interleaved at the IP layer.

Fortunately, we can easily address all of these problems by reassembling TCP streams
using readily available tools such as tshark. This allows all subsequent analysis to be carried
out on streams of TLS records as opposed to raw IP packets. In effect, independent Tor
connections are indeed processed independently, the order of Tor cells is preserved, and
finally, artifacts of TCP/IP such as re-transmissions and acknowledgments carrying no data
are removed. As a result of this step, we obtain a trace of incoming and outgoing TLS records
for each Tor connection. To simplify all further processing, we map traces to sequences of
record sizes where a positive and negative sign are used for incoming and outgoing traffic
respectively.

3.1.2 Filtering and Merging TLS Records

We proceed to apply the following chain of transformations to account for various properties
of Tor and TLS that impact the analysis of network traffic.

a) Filtering empty records. The observed sequence of TLS records depends on the version of
the OpenSSL library used by the entry node and the proxy node. In particular, recent
versions of OpenSSL introduce a mitigation strategy for the BEAST attack that transmits
empty records at regular intervals in all TLS streams. As a first step, we therefore filter
sequences such that they only contain entries representing records of 100 bytes or more.
This preserves Tor cells as the minimum cell size is 512 bytes.

6

b) Merging of records. Unfortunately, we found that the same HTTP request can produce
several different sequences of TLS record sizes, and thus analyzing sequences of record
sizes is bound to fail. The reason for this behavior is that Tor cells are not mapped to
TLS records one by one but instead, several Tor cells may be merged into a single record.
This process depends entirely on the interplay of buffer flushing inside nodes on the Tor
communication path and is hard to control by attackers. Instead of striving to model
this chaotic behavior, we accept that we simply do not have control over the sizes of TLS
records or IP packets but only over the amount of data transferred before each direction
change. We therefore merge adjacent TLS records going into the same direction to obtain
a sequence representing the amount of data rather than individual records.

c) Filtering control cells. While the vast majority of Tor cells relay user data, several cells exist
that are unrelated to user data. In particular, Tor implements a flow-control mechanism
that leads to an exchange of single Tor cells at regular intervals. To filter these cells, we
discard any sizes smaller than twice the cell size after merging. The rational behind this
step is that neither HTTP requests nor responses typically fit into a single cell. Upon
removal of these single cells, we merge TLS records again to connect data relay cells
previously separated by control cells.

d) Normalization of sizes. The concrete sizes of transfered data vary slightly depending on
the version of Tor and its libraries. As a simple normalization, we express all sizes in
multiples of 2000 bytes.

Upon completion of the preprocessing step, each Tor connection is represented by a
sequence of integers that encodes the amount, direction and order of data transfers. We refer
to these sequences as data transfer sequences throughout the rest of this paper.

3.2 Side Channel Design

0 2000 4000 6000 8000 10000
Request size in Bytes

0

2000

4000

6000

8000

10000

R
e
sp

o
n
se

 s
iz

e
 i
n
 B

y
te

s

(a) Request-response pairs of 10,000
web pages.

0 2000 4000 6000 8000 10000
Request size in Bytes

0

2000

4000

6000

8000

10000

R
e
sp

o
n
se

 s
iz

e
 i
n
 B

y
te

s

(b) Request-response pairs of our side
channel.

Figure 2: Distribution of request and response sizes in 10,000 web pages and our side channel.

7

The previous section presents a preprocessing scheme that can be applied to network
traces to highlight data transfers in Tor communication. However, it is still unclear whether
attackers can reliably encode messages in the order, amount and direction of transfers and
hence, whether we can carry out a corresponding side-channel attack. In particular, the side
channel should have the following two properties: First, normal web traffic should be clearly
distinguishable from any side-channel communication to make false positives very unlikely.
Second, the transmission speed needs to be high enough to allow short byte sequences to be
transmitted before the user leaves a web page.

Side-channel communication can only be distinguished from normal web traffic, if data
transfer patterns exist that are atypical for normal web pages. To determine whether such
patterns exist, we record traces of typical web page loading and analyze request-response
pairs. Figure 2a shows the distribution of request-response pair sizes for 10,000 web pages
from the Alexa ranking. The plot indicates that the vast majority of requests are rather short,
requiring only about a thousand bytes. Hence, the range of request sizes between 2, 000
and 8, 000 bytes seems suitable to establish a side channel, as these sizes are large enough
to be atypical but still enable a fast transmission. We thus propose to encode and transmit
messages as follows:

A message is first padded to a multiple of four bits and then split into quadbits. Each
quadbit (q1, q2, q3, q4) is then mapped to a request-response pair (r1, r2), where r1 is the
request size and r2 the response size. To this end, we define an auxiliary function f that
maps two bits qi and qj to a size value as follows

f (qi, qj) = (qi + 2qj) · s + c,

where s controls the spacing between different sizes and c is an offset. To discriminate requests
and responses, we mark the size of requests with a negative sign. Consequently, we obtain
eight different sizes corresponding to the alphabetA = {− f (1, 1), . . . ,− f (0, 0), f (0, 0), . . . , f (1, 1)}.
In accordance with Figure 2a, we set s = 2000 and c = 2000 for our side channel. Using this
alphabet, we can then map a quadbit to a request-response pair with the following function

m : {0, 1}4 −→ A×A,

m(q1, q2, q3, q4) 7−→ − f (q1, q2), f (q3, q4).

By computing the function m for all quadbits of a message, concatenating the resulting
sizes and marking requests with a negative sign, we finally obtain a data transfer sequence
suitable for transmission over the side channel.

Figure 2b shows the distribution of request-response pairs for 50 random messages
encoded using our scheme and transmitted 1, 000 times each. The 4× 4 grid induced by our
alphabet is clearly visible in the plot and placed at the desired offset in the size space.

8

3.3 Transmission of Web Page Markers

Equipped with a side channel, we can now expose visited web pages by transmitting suitable
messages from the user’s browser. This, however, creates two additional challenges. First, a
suitable browser-based mechanism for transmission of correctly ordered sequences of HTTP
requests needs to be found, and second, web page markers that encode the names or URLs of
visited web pages need to be constructed.

3.3.1 Issuing HTTP Requests

As detailed in Section 2.2, we assume that an attacker is able to execute JavaScript code
within the browser of a Tor user. This code can be embedded in a displayed advertisement,
injected via cross-site scripting or contained in any other included JavaScript code. For
establishing the side channel, the code does not need to operate in the context of the marked
web page and thus our attack is not effected by the same-origin policy.

The standard JavaScript object XMLHttpRequest offers a mechanism for request transmis-
sion that fits our needs perfectly. The object allows requests to be issued from the user’s
browser synchronously while offering fine-grained control over request content and headers.
Moreover, it is available in all modern browsers and can be considered a core browser feature.
We can thus employ XMLHttpRequest to transmit a request-response pair (r1, r2) using the
following URL

http://server.com/res?str

where res is simply a resource of size r1, such as an image or a document, and str a
random string of length r2 attached to the URL. We choose a random string here to reduce
caching effects induced by some browsers. Note that the contacted server can be any server
offering resources with the required sizes. Similar in spirit to gadgets of binary code used in
return-oriented programming, it is sufficient to find a server that offers resources with four
different sizes to successfully carry out the attack. Consequently, the server does not need to
be controlled by the attacker and hence provides no information about the attacker’s origin.

As an illustrative example, we encode and transmit the 16 symbols long message “1337
dead beef babe” over the presented side channel. Figure 3a shows the message encoded
as a data transfer sequence before transmission, while Figure 3b shows the corresponding
sequence observed in encrypted Tor traffic. Apart from a constant scaling factor introduced
by protocol overhead, the two sequences are almost identical. In particular, the order of
request-response pairs is preserved and all but the last request-response pair can be perfectly
reconstructed from the observed traffic.

Finally, we need to note that our attack is not limited to JavaScript code. In fact, in any
other mechanism for automatically issuing requests from the user’s browser can be used to
establish the side channel. For example, it is possible with only little adaption to transfer
request-response pairs using a chain of HTML redirects.

9

Request-response pairs

10000

5000

0

5000

10000

B
y
te

s

1 3 3 7 D E A D B E E F B A B E

(a) Original message.

Request-response pairs

10000

5000

0

5000

10000

B
y
te

s

1 3 3 7 D E A D B E E F B A B F

(b) Observed data transfer sequence.

Figure 3: Example of the side channel: (a) original 8-byte message encoded as a data transfer
sequence; (b) observed data transfer sequence in Tor traffic (Negative numbers indicate
request sizes, positive number response sizes).

3.3.2 Web Page Markers

We are now able to transmit short messages over the side channel to expose web pages
visited using Tor. If the attacker only wants to monitor a single web page, choosing a constant
message is sufficient. However, to monitor multiple web pages or track how a user browses
from one page to another, the web page markers need to be designed such that they have a
large pairwise Hamming distance, thereby minimizing the probability for confusions.

Ideally, the attacker employs an error-correcting code to generate messages with a high
Hamming distance. For example, the Walsh-Hadamard code can be used to encode messages
of length k ≤ 7 as code words of length 2k with maximized minimum Hamming distances [1].
A practical drawback of this approach is that no natural mapping between web pages and
markers exists and thus, the web pages to be monitored and their corresponding markers
need to be fixed in advance.

As a compromise, we use the 20 byte SHA-1 hash value of the monitored URL as a web
page marker. This ensures that there is a natural mapping between URLs and their web page
markers. Moreover, it is a design criterion for cryptographic hashes to generate statistically
independent and equally distributed bits, and we can expect web page markers to be equally
distributed in the message space, thereby having a rather low probability of confusions.

3.4 Detection of Web Page Markers

The presented side channel allows web page markers to be transmitted and recognized by
human observers, yet due to the vast amount of network traffic to analyze, our attack only
becomes practical if the markers can be detected automatically. In this section, we present
an automated approach for the detection of web page markers in monitored traffic that
combines techniques from information retrieval and machine learning.

10

3.4.1 Positional N-grams

To identify markers in a monitored data transfer sequence, we use a sliding window and
classify the sequence under each window independently. This highlights an advantage of
our attack over related traffic analysis attacks. Since the marker is transmitted in a small time
frame, it is perfectly valid to limit the analysis to small sequences of the network trace, in our
experiments 100 symbols, thus significantly reducing the computational resources required
for training a classifier and detecting web page markers.

Several learning algorithms seem suitable for detection of markers, yet most of these
algorithms are defined for vectors and cannot be directly applied to sequential data. To
address this issue, we construct a map from sequences to a vector space that encodes
information about the contained symbols and their positions. In particular, we introduce
positional n-grams—an extensions of classic n-grams [5, 28]—specifically adapted for detecting
web page markers in Tor traffic.

Let S = An denote the set of all n-grams, that is, all possible sequences of n symbols
from our alphabet A. We then define a positional n-gram p to be a pair (s, i) where s is an
n-gram and i ∈N indicates the position of s in a sequence. We denote the set of all positional
n-grams by P = S×N. To compensate noise in the network traffic, we do not consider a
single position i, but instead focus on a range of positions between i and i + τ, where τ is a
tolerance parameter. Based on these definitions, we can define a map φ from a sequence x to
a vector space R|P| by

φ : A∗ −→ R|P|,

φ(x) 7−→ (#(x, p))p∈P

where #(x, p) returns the number of occurrences of the positional n-gram p = (s, i) between
the positions i and i + τ in the sequence x. The vector φ(x) encodes information about the
symbols, their order and their position in x—thus reflecting the basic properties of a web
page marker.

3.4.2 Probabilistic Classification

Using the function φ we are finally ready to apply a machine learning classifier for detection
and discrimination of different web page markers. In particular, we employ a multi-class
Support Vector Machine (SVM) with probabilistic outputs [14, 26] for this task. The SVM
is trained on the sequences of the individual markers—independently from the particular
target web pages. Given an unknown sequence, the SVM can then be used to identify the
most likely web page marker present in this sequence. Due to the probabilistic output, we
are able to quantify the confidence of this decision, which enables us to determine sequences
that do not correspond to any of the known markers.

At first sight, the high dimensionality of the vector space induced by positional n-grams
may seem prohibitive for an efficient classification using an SVM. Fortunately, this is not
problematic in practice for two reasons. First, vectors are only sparsely populated, allowing
storage in space efficient data structures. Second, if Ŝ is the set of n-grams actually observed,

11

the cardinality of the corresponding set of positional n-grams P̂ is |Ŝ| · (l + τ), where l is
length of the windows. As a result, the training as well as the application of the SVM can be
carried out within a couple of minutes on several thousands of data transfer sequences.

4 Evaluation

We evaluate the Torben attack in a series of experiments that allows us to assess its effec-
tiveness in different settings. After presenting our experimental setup (Section 4.1 & 4.2),
we first evaluate the Torben attack in a closed-world setting (Section 4.3), where users can
only visit web pages from a fixed set. While this setting is rather unrealistic, it has been
extensively studied in the website fingerprinting literature and thus enables us to compare
our approach to prior work. We proceed to consider an open-world setting, where users
can freely choose web pages from a potentially infinite number of web pages—60,000 in our
experiment—(Section 4.4). The open-world setting allows us to obtain a good approximation
for the false-positive rate of our attack. Finally, we perform a live experiment where we
evaluate the ability of Torben to identify web page markers in real-world traffic generated by
multiple users (Section 4.5).

4.1 Data Collection

To automatically visit a large number of web pages over the Tor network in an acceptable
time, we use the Selenium WebDriver (version 2.38.3), a browsing automation plug-in for
Mozilla Firefox. The plug-in is installed along side the Tor browser bundle (version 3.5),
the standard distribution of Tor. This ensures that the browser configuration used in our
experiments almost exactly matches the configuration employed by most Tor users.

For our experiments we automatically visit different sets of the top one million web pages
from the Alexa ranking (retrieved in February 2014). For the vast majority of web pages,
the Selenium WebDriver can automatically determine when the page is fully loaded based
on loading of the page icon. In rare cases, successful page load is not detected within 3
minutes. In these cases we discard this web page and use the next page in the Alexa ranking
instead. Moreover, we remove variants of very similar pages. For example, we consider only
google.com and not google.de or google.fr. This is necessary to obtain a fair comparison
with website fingerprinting approaches as these approaches are known to fail if web pages
are too similar.

4.2 Detection Setup

To perform the Torben attack in practice, we implement the preprocessing, transmission and
detection steps outlined in Section 3. For extracting positional n-grams from network traces,
we use the tool Sally [27] (version 0.8.3) and for learning the probabilistic classification the
library LIBSVM [4]. All experiments are conducted on an Intel i7 2,66 GHz CPU with 8 GB of
RAM, except for the website fingerprinting attack by Cai et al. [3]. The latter attack requires

12

Konrad Rieck

Konrad Rieck

Konrad Rieck

the computation of a large kernel matrix and is conducted on four AMD Opteron 6378 CPUs
with 64 cores and 256 GB RAM each.

For training the detection method described in Section 3.4, we generate 100 web page
markers using the SHA-1 hashes of the top Alexa web pages and record 50 transmissions
for each of these markers over Tor. Note that only the web page markers and not the actual
web pages are recorded for training our detection method. The resulting network traces
are then used to train the multi-class SVM, where we perform a model selection via 10-fold
cross validation and fix the n-gram length to n = 3, the tolerance to τ = 9 and the SVM
regularization to C = 0.1. The resulting detector is used unmodified in all of the following
experiments.

4.3 Closed-World Evaluation

In the first experiment, we consider a closed-world setting, where the user is only able
to visit a limited set of web pages. In this scenario, the attacker is able to use a classifier
that only discriminates between the web pages of this set. Although it is unlikely that this
scenario applies to many situations in practice, it already shows whether the web page
markers are distinct enough from each other to allow for a reliable detection. Moreover, the
experiment enables us to compare the effectiveness of our approach with that of related
website fingerprinting attacks.

Herrmann Panchenko Cai Torben
0

20

40

60

80

100

D
et

ec
tio

n
ac

cu
ra

cy

38.9

58.7

90.6
95.0

(a) February 2014

Herrmann Panchenko Cai Torben
0

20

40

60

80

100

D
et

ec
tio

n
ac

cu
ra

cy

14.6

26.1
32.7

95.9

(b) April 2014

Figure 4: Deanonymization performance of Torben and website fingerprinting attacks. The
performance is evaluated on the top 100 Alexa web pages visited in February and April 2014.

We visit each of the top 100 Alexa web pages 50 times, first in February 2014 and a second
time in April 2014 resulting in two data sets. To simulate the attack scenario of a remote
marker, we use a reverse proxy and inject a small JavaScript snippet into each page that
opens a separate browser window containing the marker, similar to an advertisement. The
marker is transmitted after a delay of 30 seconds. As 10 of the 100 web pages load very
slowly over Tor and largely overlap with the marker, we increase the delay to 120 seconds in
these cases.

13

20 40 60 80 100
Predicted markers

20

40

60

80

100

W
e
b
 p

a
g
e
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) February 2014

20 40 60 80 100
Predicted markers

20

40

60

80

100

W
e
b
 p

a
g
e
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) April 2014

Figure 5: Confusion matrices for the Torben attack. The confusion is determined on the top
100 Alexa web pages visited in February and April 2014.

The transmission time of the web page markers ranges from 12 to 20 seconds with a
mean of 18 seconds. On average, 300 packets with a total of 390,000 bytes are necessary for
sending the complete marker to the user. As the transmission happens in the background,
these slight differences to the original web page traffic are hardly noticeable, in particular
because communication over Tor often suffers from rather long loading times.

To enable a comparison with related website fingerprinting attacks, we implement the
approaches by Herrmann et al. [11], Panchenko et al. [25] and Cai et al. [3], where the first is
slightly modified to use an SVM instead of an MNB classifier. For all approaches, we conduct
the same experimental procedure as for the Torben attack, except that we do not implant
markers into the web pages. Furthermore, our detection method is trained solely on web
page markers, whereas the fingerprinting attacks are trained on a sample of the web pages
visited in February 2014.

Figure 4a shows the performance of Torben and the website fingerprinting attacks on the
web pages visited in February 2014. Our approach is able to correctly deanonymize 95%
of the web page visits, whereas the performance of the other attacks ranges from 38.9% to
90.6%. However, all website fingerprinting attacks suffer from changes in web content. When
applied to the same web pages visited in April 2014, none of the passive approaches is able
correctly identify more than a third of the web pages, as shown in Figure 4b. By contrast, the
Torben attacks attains a similar performance as in February and significantly outperforms
the website fingerprinting attacks, as the learned markers do not change over time.

We need to note here that the attack models underlying website fingerprinting and Torben
differ: While website fingerprinting generally assumes a passive adversary that only monitors
communication, Torben builds on an active attacker that is capable of embedding markers.
As detailed in Section 2.2, however, this embedding often requires only little effort and thus
is a realistic threat.

14

Moreover, we observe in Figure 5 that confusions only happen between a handful of web
pages. This is likely an artifact of the probabilistic classification employed in our attack. If a
web page marker is incorrectly identified, the classification tends to favor particular markers,
which in our setting correspond to the numbers 92 and 37. Nonetheless, these confusions are
rare and do not severely impact the deanonymization performance of our attack.

Overall, this experiment demonstrates that the proposed side-channel attack can deanonymize
web page visits with high accuracy in a closed-world setting. Due to the active injection of
markers, our approach outperforms passive attacks that are unable to compensate changes
in the content and resulting traffic patterns of web pages.

4.4 Open-World Evaluation

In this experiment, we consider an open-world setting, where the user can freely visit web
pages from a large unknown set and only few of these pages are tagged with a web page
marker. The adversary is thus interested in determining whether marked web pages have
been visited by a particular user.

We extend the previous experiment by additionally choosing 60,000 web pages at random
from the Alexa top one million ranking, none of which are part of the top 100 web pages.
Each of these web pages is then visited once over Tor without sending a marker. This large
set of web pages enables us to estimate the false-positive rate of the Torben attack. Due to the
usage of an SVM with probabilistic output, we can simply identify data transfer sequences
that do not contain a web page marker by setting a threshold on the determined probabilities.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
False positive rate

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
e
te

ct
io

n
 r

a
te

February 2014
April 2014

Figure 6: Detection performance of
the Torben attack on 100 marked and
60,000 unmarked Alexa web pages in
February and April 2014.

Figure 6 shows a ROC curve for the detection
performance of Torben in this experiment. Note that
the false-positive rate on the x-axis is given in the
range 0 to 0.001, while the detection rate is shown
on the y-axis between 0.6 and 1.0. The attack enables
detecting 91% of the 100 web pages with no false
positives in a set of 60,000 additional web pages.
The detection rate then increases only slowly which
indicates that the markers got corrupted. However,
in most cases the classifier is able to compensate the
noise that is probably introduced by delays in the
network or additional network traffic.

The outcome of the open-world evaluation
demonstrates the reliability of the web page markers,
which are unlikely to be confused with regular web
page traffic and enable detecting marked pages with
a very low false-positive rate. This reliability rests
on the design of the side channel that makes use
of atypical request-response pairs for transmitting
information (Section 3.2).

15

4.5 Live Evaluation

The previous experiments already show the effectiveness of our approach on a large amount
of data that has been recorded automatically. However, in order to fortify the obtained results,
we conduct a further experiment in which we analyze web traffic of real users.

In this experiment, four different users surf through the web for roughly two hours using
Tor. Each user visits arbitrary web pages and from time to time, randomly chosen marked
web pages. We simulate the attack scenario of a remote marker as described in Section 4.3
and set the transmission delay for markers to 120 seconds.

Afterwards, the recorded traffic of each user is split into chunks of three minutes that are
separately analyzed using a sliding window as described in Section 3.4. Hence, the classifier
outputs a label and a probability score for each chunk. If the probability score of a chunk is
below a particular threshold, we consider that the user did not visit any marked web pages
during this time frame. We select this threshold to be t = 0.1 based on several test runs
which we conducted in advance.

From a total of 34 visited marked web pages, we are able to detect and classify 31 of them
correctly. Furthermore, the classifier does not output any false positives. As an example,
Figure 7 shows the probability scores which we obtained for a particular user. The tick marks
on the x-axis denote time frames in which the user has visited a marked web page. Note,
that although he classifier missed one marked web page, the probability score for this page
is still significantly higher than for non-marked web pages.

tw
itt

er
.c

om
im

db
.c

om

bl
og

sp
ot

.c
om

am
az

on
.c

om

ap
pl

e.
co

m

m
oz

ill
a.

or
g

fli
ck

r.
co

m

yo
ut

ub
e.

co
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

b
a
b
ili

ty
 s

co
re

Threshold
User Traffic

Figure 7: Deanonymization results of a particular user recorded within a time frame of 1
hour and 59 minutes.

5 Limitations and Defenses

Our experiments show that Torben is a very reliable deanonymization technique against Tor.
The attack is based on a fundamental property of low-latency anonymization networks—the

16

inability to conceal the size of data transfers—which makes crafting defenses against Torben
a difficult task. In this section, we explore the limitations of our approach and provide
starting points for the development of effective defenses.

First of all, our attack makes no attempts of hiding web page markers. In consequence,
developing a detection mechanism that identifies and suppresses communication on our side
channel may be an effective method to protect users. Such mechanisms could be implemented
either on the client side directly in the form of a browser plug-in or even by Tor nodes to
protect all clients at once. This, however, may lead to an arms race between the attackers and
defenders in which the attackers may frequently change parameters of the attack, such as
request/response sizes, requiring a regular update of the detection mechanism.

Second, our evaluation shows that web page markers may be corrupted if they largely
overlap with the loading of a web page. This suggests that, although our classification
model is able to compensate some traffic interference using positional features, it fails if
the interference becomes too severe. A second option would thus be to introduce chaff
traffic to disturb the side-channel communication. Yet, this option may not be satisfactory
in practice, as it introduces additional traffic and might lower Tor’s overall performance.
Whether such chaff traffic can be selectively injected to only destroy indicative traffic patterns
is an interesting question for further research.

Finally, our specific attack variant is based on JavaScript and obviously disabling JavaScript
is a possible defense. However, we would like to stress that sequences of HTTP requests can
be generated using many other mechanisms. In particular, it is possible to create a chain
of HTML redirects to perform side-channel communication, thus allowing the attack to be
performed without any active web content. Moreover, it should be noted that JavaScript is
enabled by default in all modern web browsers as well as the Tor browser bundle, simply
because many popular web pages will not work without JavaScript.

6 Related Work

Attacks against anonymization techniques have been a vivid area of research in the last years.
In this section we thus discuss approaches related to our side-channel attack, starting from
early deanonymization attacks on encrypted communication (Section 6.1) and reaching over
to passive and active attacks against low-latency anonymization networks (Section 6.2 & 6.3).

6.1 Attacks on Encrypted Communication

Several researchers have recognized that while it may not be possible to decipher encrypted
messages, when transmitted over a communication link, important characteristics of the data
such as its size and partitioning into data units is often disclosed. For example, multiple
approaches exist to identify web pages in encrypted HTTP traffic by observing characteristic
packet lengths [22, 32]. To prevent these attacks, it is often possible to introduce artificial
changes to packet sizes and timing intervals, thereby obfuscating message characteristics.
This is for instance done by the traffic transformation tool HTTPOS [23].

17

Unfortunately, these countermeasures not only introduce traffic overhead but are also
unable to hide the overall size of data transfers [8] over the network, a problem that we
exploit in the Torben attack.

6.2 Passive Attacks against Tor

Herrmann et al. [11] present one of the first passive attacks on Tor. Similar to Liberatore et
al. [22] they consider IP packet lengths and apply an MNB classifier to identify web pages
by their traffic patterns. Although their attack works well on encrypted web traffic, it only
achieves a low accuracy on Tor traffic. A higher accuracy is achieved by Panchenko et al. [25]
by considering additional features, such as the amount of data sent before each direction
change, thus allowing characteristic traffic bursts to be identified. Panchenko et al. obtain a
detection performance of up to 73% in an open-world setting on 5,000 randomly chosen web
pages from the Alexa top million. Continuing this line of research, Cai et al. [3] consider the
ordering of packets while taking displacements into account using the Damerau-Levensthein
distance. The authors evaluate their approach in a closed-world setting and achieve an
accuracy of 83% on 800 different web pages. Wang et al. [34] are able to reach an even higher
detection result using similar features over TLS records.

All of these passive approaches, however, suffer from false-positive rates that are too
high to enable a practical application [20]. Moreover, our experiment demonstrate that
website fingerprinting suffers from changes in web content and degrades in deanonymization
performance over time.

Several methods have been proposed to counter website fingerprinting attacks [8, 10, 36].
Unfortunately, all of these methods introduce traffic overhead or timing delays which can
hardly be tolerated in practice. For example, Wright et al. [36] propose a traffic morphing
technique which morphs the packet size distribution of a given web page to the distribution
of another web page. To this end, they solve a convex optimization problem in order to
derive a morphing matrix that minimizes the number of bytes of overhead. Regardless of
this, the bandwidth overhead would still significantly lower Tors bandwidth which could
hinder the further adoption of Tor by users.

While website fingerprinting attacks consider an attacker only between the client and
its entry node, traffic confirmation attacks require an attacker who is able to correlate the
traffic on both ends of a communication path. Several authors demonstrate the effectiveness
of such attacks [e.g., 6, 21, 31, 38]. However, this scenario requires the attacker to have access
to both ends of the connection over a long period of time.

6.3 Active attacks against Tor

Passive traffic analysis attacks require traffic to be observed for a longer period of time before
users can be effectively deanonymized [6, 18]. Approaches where attackers actively attack
the communication path to lower the required amount of time have therefore been proposed.

For example, several authors propose attacks on the Tor network itself that attempt to
reveal the complete communication path and thus link communication parties [9, 16, 24].

18

Similar to our approach, Murdoch et al. [24] correlate a specific traffic scheme sent from a
corrupted server with probe traffic observed on a Tor node in order to determine whether this
particular node is part of an observed connection. However, since the number of nodes in the
Tor network has significantly increased in recent years, this attack has become unpractical.

Instead of trying to reveal the complete communication path, it is also possible for an
attacker to inject specific patterns at one end of a communication that can be observed at the
other end to link both communication parties. Several of these watermarking schemes have
been proposed for mixed networks which use inter-packet delays to encode a watermarking
sequence [12, 13, 35, 37]. A slightly different approach is presented by Yu et al. [37] who inject
watermarks into the traffic using spread spectrum techniques. In this case, a pseudo-noise
code is used to spread the signal over a large spectrum at the server-side. The same code is
then used at the client-side to de-spread the signal and thus identify the traffic.

In contrast to Torben, these attacks do not take place at the application layer and are thus
much more difficult to realize in practice. Furthermore, they consider a stronger attacker
who is able to control the exit node or the link between the exit node and the server.

7 Conclusion

Tor is among the largest and best understood anonymization networks operated to date,
protecting the privacy of over a million users worldwide. This paper presents a novel
deanonymization attack on Tor that exploits a fundamental weaknesses of low-latency
anonymization networks. In particular, we show that an attacker capable of providing
web content to users, e.g., through banner advertisements or cross-site scripting, is able to
deanonymize users via a side-channel attack. By transmitting web page markers through
this side channel, the attacker can expose the web pages a user visits within a couple of
seconds. This attack is considerably more effective than known website fingerprinting attacks
and far less intrusive than browser exploits used in the wild. Fortunately, the side-channel
communication is clearly visible in network traces and hence it may be possible to implement
detection approaches as a first countermeasure against this attack.

Acknowledgments

The authors would like to thank Xiang Cai for making the implementation of his website
fingerprinting attack publicly available.

19

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Press,
2009.

[2] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes: a system for anonymous
and unobservable internet access. In Proc. of International Workshop on Design Issues in
Anonymity and Unobservability, 2001.

[3] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a distance: Website finger-
printing attacks and defenses. In Proc. of ACM Conference on Computer and Communications
Security (CCS), 2012.

[4] C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. 2011.

[5] M. Damashek. Gauging similarity with n-grams: Language-independent categorization
of text. Science, 267(5199):843–848, 1995.

[6] G. Danezis. The traffic analysis of continuous-time mixes. In Proc. of Privacy Enhancing
Technologies Symposium (PETS), 2005.

[7] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router.
In Proc. of USENIX Security Symposium, 2004.

[8] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-boo, i still see you: Why
efficient traffic analysis countermeasures fail. In Proc. of IEEE Symposium on Security and
Privacy, 2012.

[9] N. S. Evans, R. Dingledine, and C. Grothoff. A practical congestion attack on Tor using
long paths. In Proc. of USENIX Security Symposium, 2009.

[10] X. Fu, B. Graham, D. Xuan, R. Bettati, and W. Zhao. Analytical and empirical analysis of
countermeasures to traffic analysis attacks. In Proc. of International Conference on Parallel
Processing (ICPP), 2003.

[11] D. Herrmann, R. Wendolsky, and H. Federrath. Website fingerprinting: Attacking
popular privacy enhancing technologies with the multinomial naive-bayes classifier. In
Proc. of ACM Workshop on Cloud Computing Security, 2009.

[12] A. Houmansadr and N. Borisov. Swirl: A scalable watermark to detect correlated
network flows. In Proc. of Network and Distributed System Security Symposium (NDSS),
2011.

[13] A. Houmansadr, N. Kiyavash, and N. Borisov. Rainbow: A robust and invisible non-
blind watermark for network flows. In Proc. of Network and Distributed System Security
Symposium (NDSS), 2009.

[14] T.-K. Huang, R. C. Weng, and C.-J. Lin. Generalized Bradley-Terry models and multi-
class probability estimates. The Journal of Machine Learning Research, 7:85–115, 2006.

20

[15] The Invisible Internet Project. http://geti2p.net/, visited May 2014.

[16] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann. The sniper attack: Anony-
mously deanonymizing and disabling the Tor network. In Proc. of Network and Distributed
System Security Symposium (NDSS), 2014.

[17] The JonDonym Anonymization Service. http://anonymous-proxy-servers.net,
visited May 2014.

[18] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson. Users get routed: Traffic
correlation on Tor by realistic adversaries. In Proc. of ACM Conference on Computer and
Communications Security (CCS), 2013.

[19] jrandom (Pseudonym). Invisible Internet Project (I2P) Project Overview. Design docu-
ment, August 2003.

[20] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. A critical evaluation of website
fingerprinting attacks. In Proc. of ACM Conference on Computer and Communications
Security (CCS), 2014.

[21] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright. Timing attacks in low-latency
mix systems. In Financial Cryptography, 2004.

[22] M. Liberatore and B. N. Levine. Inferring the source of encrypted http connections. In
Proc. of ACM Conference on Computer and Communications Security (CCS), CCS ’06, 2006.

[23] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and R. Perdisci. Httpos: Sealing
information leaks with browser-side obfuscation of encrypted flows. In Proc. of Network
and Distributed System Security Symposium (NDSS), 2011.

[24] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of Tor. In Proc. of IEEE Symposium
on Security and Privacy, 2005.

[25] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website fingerprinting in onion
routing based anonymization networks. In Proc. of ACM Workshop on Privacy in the
Electronic Society, 2011.

[26] J. Platt. Fast training of support vector machines using sequential minimal optimization.
In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support
Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

[27] K. Rieck, C. Wressnegger, and A. Bikadorov. Sally: A tool for embedding strings in
vector spaces. Journal of Machine Learning Research (JMLR), 13(Nov):3247–3251, Nov. 2012.

[28] A. Robertson and P. Willett. Applications of n-grams in textual information systems.
Journal of Documentation, 58(1):48–69, 1998.

[29] S. Rosenblatt. Nsa tracks google ads to find tor users. http://www.cnet.com/news/
nsa-tracks-google-ads-to-find-tor-users/, visited October 2014.

21

[30] B. Schneier. How the nsa attacks Tor/Firefox users with Quantum and
FoxAcid. https://www.schneier.com/blog/archives/2013/10/how_the_
nsa_att.html, 2013.

[31] V. Shmatikov and M.-H. Wang. Timing analysis in low-latency mix networks: attacks
and defenses. In Proc. of European Symposium on Research in Computer Security (ESORICS),
2006.

[32] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu. Statistical
identification of encrypted web browsing traffic. In Proc. of IEEE Symposium on Security
and Privacy, 2002.

[33] The Tor project. http://www.torproject.org, visited May 2014.

[34] T. Wang and I. Goldberg. Improved website fingerprinting on Tor. In Proc. of ACM
Workshop on Privacy in the Electronic Society, 2013.

[35] X. Wang, S. Chen, and S. Jajodia. Network flow watermarking attack on low-latency
anonymous communication systems. In Proc. of IEEE Symposium on Security and Privacy,
2007.

[36] C. V. Wright, S. E. Coull, and F. Monrose. Traffic morphing: An efficient defense against
statistical traffic analysis. In Proc. of Network and Distributed System Security Symposium
(NDSS), 2009.

[37] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao. Dsss-based flow marking technique for
invisible traceback. In Proc. of IEEE Symposium on Security and Privacy, 2007.

[38] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On flow correlation attacks and
countermeasures in mix networks. In Proc. of Privacy Enhancing Technologies Symposium
(PETS), 2004.

22

