
Probabilistic Methods

for Network Security

From Analysis to Response

Tammo Krueger

follow
structur

minim
valid
infrastructur

static

valudistribut

loser

setup found

calcul

set

observ
name

associ

lower

equal

functionchapter

ca
pa

bl

bound

complex

implement

complet

le
ar

ne
r

semant

chain

detail

applic

file

dns

mcad

build

path

similar

recorddeploy

administr
http

anomali

runtim

communic

sequenti

preprocess

dimension

crossvalid

due
exploit

space

machin

chosen

detector

simpl

act experi

via

rang

client

design

estim

process

rule
domain

combin

binari

collect

kernel

accept

variabl

expect

extens

templat

distanc

pr
ac

tic

framework

cluster

assum

indic

simul

studi

configur

vector

comput

top exhibit

blog09

mean

constant

m
al

ic
i

hand

accord

honeypot

measur

tr
an

si
t

input

choos

messag

appli

heal

consid

enabl

robot

propos

avail

contain

de
fin

field

sequenc

ftp

time
statist

paramet

focus

cvst
potenti

exampl size

actual

infer

note

re
la

t

system

converg

decid

occur

dimens

vulner

request

pick

sip

denot

task

term

close

line

step

event

seen

dr
op

differ

up
pe

r

matrix

individu

error

appendix

involv
left

previous

start

assign

test
effect

m
ai

n

subset

plot

describ

use

pr
ot

oc
olintroduc

payload

sp
ec

if

decis

proxi

signific

user

detect

su
ffi

ci

model
tabl

generat
inform

approach

run

identifi

extract

special

pr
ob

ab
l

select

prisma

nmf

action

increas

zo
ne

replac

co
nc

ep
t

level

string

sq
ua

r

host

solut

ne
ga

t

shown

rate

ne
tw

or
k

trace

fast

pr
op

er
ti

final

construct

session

embed am
ou

nt

risk
real

abl

malwar

protect

socal

de
ve

lo
p

solv

approxim

ngram

discuss

re
sp

on
s

token
direct

correspond

true

figur

algorithm

carri

behavior

fals

compar

ncad

classif

take

lead

type

au
to

m
at

result

server

reduct

perform

techniqu

re
se

ar
ch

remain

evalu

anomal

addit

maxim

tool

enc

optim

varianc

gain

intrus

determin

reduc

method

random

consist

base

near

regress

chang

object

instanc

markov
train

factor

content

speed

under

depend

featur

furthermor

web

threat

normal

check

al
lo

w

correct

secur

pool

length

layer

fix

overal
transform

tr
af

fic

analysi

servic
basic

learn
regular

control

look

stop

first08

procedur

param

instead
posit at

ta
cksuitabl

initi

probabilist

sampl

total

messag

al
go

rit
hm

te
m

pl
at

session

fo
llo

w
ru

le

figur
observ result

matrix
accord

prisma

specif

communic

relat
generat

analysi

similar

be
ha

vi
or

field

allow

inform

co
rr

es
po

nd

describ

servic

statist

level

se
m

an
t

correct

sequenc

focus

valid

addit

function
task

cluster

construct

infer

sh
ow

n

real

configur
error

algorithm
learn

pa
ra

m
et

stepperform

fo
llo

w

procedur

method

cv
st

drop

fig
ur

estim

ob
se

rv

train

result

probabl
size

use

process

accord

valu

specif

cr
os

sv
al

id

approach

time

in
st

an
c

re
la

t

secur

evalu

ge
ne

ra
t

sequenti

analysi

similar

behavior

speed

allow
overal

su
bs

ettoken
request

network
paramet

perform

follow

m
et

ho
d

drop

observ

tr
ai

n

de
te

ct

attack

protocol

result

use

detector

process

applic

sp
ec

if

ba
se

m
ar

ko
v

web

approach

content

di
re

ct

anomali

secur

ht
tp

normal

system

si
m

ila
r

action

se
rv

er

contain

traffic

st
ru

ct
ur

compar

path

semant

type

Probabilistic Methods for Network Security

From Analysis to Response

vorgelegt von
Diplom-Informatiker

Tammo Krueger
aus Berlin

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Manfred Opper
Gutachter: Prof. Dr. Klaus-Robert Müller
Gutachter: Prof. Dr. Konrad Rieck
Gutachter: Prof. Dr. Michael Meier

Tag der wissenschaftlichen Aussprache: 12. Februar 2013

Berlin 2013
D 83

Acknowledgements

Given my previous odyssey in the oceans of research, I am especially grateful to
Prof. Dr. Klaus-Robert Müller for finally providing a home: His constant encour-
agement and ability to gather both talented and kind people in one spot made my
stay at the IDA group an essential part of my life. The support of Prof. Dr. Kon-
rad Rieck was indispensable to major parts of this thesis, be it the discussion of
scientific problems, providing data sets to prove the functioning of a method, or
just listening to funk music to finish the paper in time. I also want to thank
Prof. Dr. Michael Meier who kindly agreed to be a referee of this thesis and to
provide his expertise in the domain of intrusion detection and malware analysis.

This work couldn’t have been done without the help of many people: First of all,
I thank Dr. Mikio Braun for not only giving crucial details for the theoretical pre-
conditions of the fast cross-validation but also for digging up some hidden treasures
of the jazz and soul world. Apart from discussing many details of matrix algebra
and statistics, Dr. Nicole Krämer also widened my knowledge of contemporary ac-
tion movies. Christian Gehl provided not only support in data set generation but
also during the last months at the Fraunhofer FIRST.

Last but not least, my thanks go to the rest of the IDA group which supported
me in many not so obvious ways by chit-chats in the coffee room, always keeping the
infrastructure fully functional (including a constant coffee supply and preventing
the bureaucracy to overwhelm me), and being such a nice bunch of people.

I acknowledge funding from the German Federal Ministry of Education and
Research under the projects ReMIND (01-IS07007A) and ALICE (01IB10003B).

3

Abstract

Today’s computer networks are constantly under attack: apart from a continuous
amount of network security threats like denial of service attacks or cross-site request
forgeries, new markets like mobile computing and tablets open up new venues for
fraudulent monetary exploitation. Thus, cybercrime is a steady driving force for
constant malicious innovations which keep on increasing the security gap. While
formal methods promise perfect protection, they are often hard to implement and
very time-consuming. Hence, they can not keep up with the pace of the modern
threat landscape and different, more flexible solutions have to be found.

This thesis shows, how methods from statistics and machine learning can im-
prove the security cycle of analysis, detection and response to threats. By carefully
layering probabilistic methods and machine learning techniques we find a design
pattern similar to best practice in software engineering: Dividing the overall prob-
lem modeling process into physical preprocessing, probabilistic preprocessing and
probabilistic modeling we arrive at solid solutions for pressing security problems.

For the analysis of network security problems we devise a fully automated pro-
cedure for protocol inference and state machine analysis of arbitrary network traces.
By first transforming the raw network traffic into session information and embed-
ding the network messages into problem-dependent vector spaces via statistical
feature selection tests, we are able to extract complete and correct message tem-
plates and abstract state machines of the underlying services leveraging specialized,
replicate-aware matrix factorization methods in combination with Markov models.
To support the detection of network security threats we construct a fast model
selection procedure which is capable of choosing the correct learning parameters
while saving up to two orders of magnitude of computation time. Deconstructing
the overall process into substeps in combination with robust testing procedures
leads to a statistically controlled model selection process. We show the applica-
bility of our concepts in the domain of intrusion response with an intelligent web
application firewall which is able to “heal” malicious HTTP requests by cutting
out suspicious tokens and replacing them with harmless counterparts, therefore
actively protecting the web server. Open source implementation of major parts
of this thesis underline the necessity for freely available solutions to foster future
development in the implementation-heavy domain of network computer security.

5

Computer-Netzwerke sind einer steigenden Bedrohung ausgesetzt, und neue
Märkte wie Mobile Computing und Tablet-PCs eröffnen dem Cybercrime immer
neue Angriffspunkte. Formale Methoden versprechen zwar beweisbaren Schutz,
sind jedoch häufig aufwendig in der Implementierung. Um die Sicherheitslücken zu
schließen, werden daher flexiblere und effektivere Methoden benötigt, die mit der
Fortentwicklung des Bedrohungspotenzials Schritt halten können.

Ausgehend von den Einzelschritten des Sicherheitsprozesses wird in dieser Ar-
beit gezeigt, wie Verfahren aus der Wahrscheinlichkeitstheorie und Methoden aus
dem maschinellen Lernen effektiv verbunden und eingesetzt werden können, um
den Sicherheitsprozess zu unterstützen: Im Bereich der Analyse werden durch
statistische Tests sinnvolle Repräsentationen für Netzwerkverkehr gefunden, die
es ermöglichen, Methoden des maschinellen Lernens zur Extraktion von Mustern
anzuwenden. In Kombination mit Markov-Modellen zur Abbildung der abstrak-
ten Statusmaschine des Netzwerkdienstes können somit sowohl die dynamischen
als auch die statischen Aspekte von Netzwerkkommunikation probabilistisch er-
fasst werden. Für die Detektion von Angriffen wird eine schnelle Modellselektion
präsentiert, die es ermöglicht, die korrekten Parameter für einen Lernalgorithmus
sehr viel schneller als mit der herkömmlichen Kreuzvalidierung zu finden. Durch
das sequentielle Lernen auf Untermengen der Trainingsdaten wird ein probabilisti-
sches Modell des Verhaltens der einzelnen Parameter erstellt, das mittels robuster
statistischer Tests kontinuierlich verkleinert wird, bis eine Konfiguration als sig-
nifikanter Sieger feststeht. Im Bereich der Reaktion auf Angriffe wird eine intelli-
gente Web-Application Firewall vorgestellt, die mittels spezialisierter Einbettungen
für einzelne Teile einer HTTP-Anfrage deren bösartige Teile extrahieren und durch
gutartige Inhalte ersetzen kann. Methoden der Anomalieerkennung zusammen mit
statistischen Tests führen zu einer vollautomatisierten Konfiguration anhand einer
gegebenen Trainingsmenge.

Bei allen Lösungen konnte ein generelles Prinzip ähnlich den Design Patterns
im Software-Engineering gewinnbringend zum Einsatz gebracht werden: Durch
sorgfältige Zerlegung des Problems in unabhängige Schichten können lokale Pro-
bleme effizient gelöst werden. Beginnend mit der physikalischen Vorverarbeitung
werden die Ursprungsdaten so aufbereitet, dass sie mit Hilfe der probabilistischen
Vorverarbeitung in geeignete, spezialisierte Räume eingebettet werden können.
Darauf basierend können im folgenden probabilistischen Modellierungsschritt die
Daten mit Methodiken des maschinellen Lernens und der Statistik abgebildet wer-
den, sodass probabilistische Inferenz betrieben werden kann. Open Source Imple-
mentierungen der wichtigsten Teile dieser Arbeit unterstreichen die Notwendigkeit
frei zugänglicher Lösungen zur effizienten Weiterentwicklung und Forschung im
Bereich der Netzwerksicherheit.

6

Contents

List of Symbols 11

1 Introduction 13
1.1 Network Security and Machine Learning 13
1.2 Probabilistic Methods for Network Security 16
1.3 List of Published Work . 18

2 Analysis 21
2.1 The PRISMA Method . 24

2.1.1 Preprocessing of Network Data 25
2.1.2 Embedding of Messages . 25
2.1.3 Clustering for Event Inference 27
2.1.4 Inference of State-Machine 30
2.1.5 Learning Templates and Rules 32
2.1.6 Simulation of Network Communication 34

2.2 Evaluation of Stateless Communication 34
2.2.1 Matrix Factorization Methods 35
2.2.2 Analysis of Honeypot Data 37
2.2.3 Effectivity of Embedding . 38

2.3 Evaluation of Stateful Communication 40
2.3.1 Data Sets and Dimension Reduction 41
2.3.2 Properties of Learned Models 42
2.3.3 Completeness and Correctness 44
2.3.4 Case Study: Koobface . 47

2.4 Discussion and Related Work . 48
2.4.1 Practical Extensions . 48
2.4.2 Other Approaches . 50

2.5 Outlook and Conclusion . 51

3 Detection 53
3.1 Cross-Validation on Subsets . 58
3.2 Fast-Cross Validation via Sequential Testing (CVST) 61

3.2.1 Robust Transformation of Test Errors 62
7

Contents

3.2.2 Determining Significant Losers 65
3.2.3 Early Stopping and Final Winner 66
3.2.4 Meta Parameters for the CVST 66

3.3 Theoretical Properties of the CVST Algorithm 67
3.3.1 Error Bounds in a Stable Regime 68
3.3.2 Fast-Cross Validation on a Time Budget 71

3.4 Experiments . 72
3.4.1 Artificial Data Sets . 73
3.4.2 Benchmark Data Sets . 77

3.5 Discussion and Related Work . 80
3.5.1 Sequential Testing in Machine Learning 80
3.5.2 Open versus Closed Sequential Testing 82

3.6 Outlook and Conclusion . 84

4 Response 87
4.1 TokDoc – The Token Doctor . 90

4.1.1 Token Types . 91
4.1.2 Anomaly Detectors . 92
4.1.3 Healing Actions . 94
4.1.4 Setup of TokDoc . 95

4.2 Evaluation . 97
4.2.1 Detection Performance . 97
4.2.2 Runtime Performance . 102

4.3 Related Work . 103
4.4 Outlook and Conclusion . 104

5 Conclusion 105
5.1 From Analysis to Response . 105
5.2 Application of Probabilistic Methods 106
5.3 Summary and Outlook . 108

Bibliography 111

A Definitions 123
A.1 Geometrical Concepts in a Vector space 123
A.2 Probabilities . 123
A.3 Markov Models . 125
A.4 Statistical Testing . 126

B Proofs and Further Analysis 129
B.1 The Robot Protocol: A PRISMA Example 129
B.2 Non-Negative Matrix Factorization via Alternating Least Squares . . 131
B.3 Proof of Convergence Theorem of CVST 133
B.4 Proof of Safety Zone Bound of CVST 134
B.5 False Negative Rate of CVST for Underestimated Change Point . . . 134
B.6 Proof of Computational Budget of CVST 136
B.7 Example Run of CVST Algorithm 137

8

List of Figures

1.1 Global threat landscape . 14

1.2 Security cycle . 17

2.1 Overview of network communication . 21

2.2 Curse of dimensionality . 22

2.3 Overview of PRISMA (figure taken from Krueger et al. [2012a]) 24

2.4 Example of template generation for a simplified FTP communication
(figure taken from Krueger et al. [2012a]) 33

2.5 Example payloads of the artificial data set (figure taken from Krueger
et al. [2011]) . 36

2.6 Visualization of bases for PCA and NMF (figure taken from Krueger
et al. [2011]) . 37

2.7 ROC curves and runtime for network anomaly detection 41

2.8 Sample FTP session generated by executing two PRISMA models . . . 44

2.9 Distribution of maximal similarities by message position per session . . 45

2.10 Extracted state model for Koobface traffic (figure taken from Krueger
et al. [2012a]) . 47

2.11 Prototype of a PRISMA model explorer 49

3.1 Mean squared error of ν support vector regression models with Gaussian
kernel repeatedly trained on 50 training points with varying σ 55

3.2 Prediction and real values of ν support vector regression models with
Gaussian kernel trained on 50 training points of the noisy sinc data set 55

3.3 Conceptual time consumption of a 5-fold cross-validation and fast cross-
validation via sequential testing (figure taken from Krueger et al. [2012b]) 57

3.4 Test error of an SVR model on the noisy sinc data set (figure taken
from Krueger et al. [2012b]) . 60

3.5 One step of CVST . 63

3.6 Illustration of the early stopping rule (figure taken from Krueger et al.
[2012b]) . 67

3.7 Visualization of the worst-case scenario for the error probability of the
CVST algorithm (figure taken from Krueger et al. [2012b]) 69

9

List of Figures

3.8 Error bound of the CVST (figure taken from Krueger et al. [2012b]) . . 71
3.9 Approximation of the time consumption for a cubic learner. 72
3.10 Difference in mean square error and relative speed gain for the noisy

sine data set (figure taken from Krueger et al. [2012b]) 74
3.11 Remaining configurations after each step for the noisy sine data set

(figure taken from Krueger et al. [2012b]) 74
3.12 Difference in mean square error and relative speed gain for the noisy

sinc data set (figure taken from Krueger et al. [2012b]) 75
3.13 Remaining configurations after each step for the noisy sinc data set

(figure taken from Krueger et al. [2012b]) 75
3.14 Difference in mean square error for SVM/SVR with increasing data

set size for noisy sine and the noisy sinc data sets (figure taken from
Krueger et al. [2012b]) . 76

3.15 Difference in mean square error and relative speed gain for the bench-
mark data sets . 78

3.16 Remaining configurations after each step for the benchmark data sets . 79
3.17 Relative speed gain of fast cross-validation compared to full cross-validation

(figure taken from Krueger et al. [2012b]) 84
3.18 False negatives generated with the closed and open sequential test for

non-stationary configurations (figure taken from Krueger et al. [2012b]) 85

4.1 Example network infrastructure . 88
4.2 Architecture of TokDoc . 91
4.3 Automatic testing procedure for the setup of TokDoc (figure taken from

Krueger et al. [2010]) . 95
4.4 The TokDoc setup console . 98

5.1 Probabilistic methods and the security cycle 107

A.1 Norms and angles in R2. 124
A.2 Distribution of a feature count F „ bn“100,000,π“0.999 overlayed by the

normal distribution approximation in red. 126

B.1 The Markov model of the robot protocol and the minimized version of
the state model (figure taken from Krueger et al. [2012a]) 129

B.2 False negatives generated with the open sequential test for non-stationary
configurations (figure taken from Krueger et al. [2012b]) 135

10

List of Symbols

Vector Space Appendix A.1, p. 123

x “ px1, x2, . . . , xf q
J Vector

‖x‖ Norm of x
depx, yq Euclidean distance
X “ pxijq Matrix
‖X‖ Frobenius norm

Probabilities Appendix A.2, p. 123

P pAq Probability of event A
P pA|Bq Conditional probability
X „ PX Random variable X distributed according to PX
ErXs Mean of random variable X
V arrXs Variance of random variable X

Markov Models Appendix A.3, p. 125

ST1 :“ rS1, S2, . . . , ST s Indexed sequence of random variables
sT1 :“ rs1, s2, . . . , sT s Concrete state sequences
PS1 Initial state probability
PSt|St´1

State transition probability

Statistical Tests Appendix A.4, p. 126

H0 Null hypothesis
H1 Alternative hypothesis
α Type I error (reject H0, but H0 is true; significance

level)
β Type II error (accept H0, but H1 is true)
1´ β Power (reject H0, and H1 is true)

More details and definitions can be found in the according appendices.

11

Chapter 1

Introduction

1.1 Network Security and Machine Learning

Since the transition of batch-operated systems to time-sharing, multi-user systems,
computer security was of paramount interest: Files and information stored by one
user should not be readable by other users and actions of one user should not
interfere with other users’ actions. The need for security was a direct result of the
concurrent execution of programs of multiple users on the systems. Gollmann [2002]
gives a very pragmatic and concise definition of computer security: “Computer
security deals with the prevention and detection of unauthorized actions by users
of a computer system.” So the interaction of a multitude of users on a system
forced the development of safety measures to protect a single user from potential
misuse by other users of the system.

First attempts to tackle the problem with formal methods turned out to be
extremely difficult: “The difficulties of formal verification, the need for trusted
subjects, and the practical infeasibility of entirely eliminating covert channels all
indicated, by the end of the 1970s, the technical complexity of computer secu-
rity.”[Mackenzie and Pottinger, 1997]. This effect was even further boosted by the
advent of networked systems. As Bishop [2002] states, “with the rise of networking
and the Internet, the arena has changed. Workstations and servers, and the net-
working infrastructure that connects them, now dominate the market. Computer
security problems and solutions now focus on a networked environment”. Therefore
the security research has had to focus even more on the effects and ramifications
of the ubiquitous networking environment. So the emergence of networks even
complicated matters for the security research community:

As computing moved beyond the traditional multi-user mainframe, the
classical computer security problem had largely been superseded by a
host of more diverse problems, many having to do with the integration
of computer and communications security in networks; and there was
no clear unitary route to the solution of network security. [. . .] Instead
of formal verification of trusted systems progressing downward from
formal specifications deeper into systems, as had been anticipated at

13

1. Introduction

0

1000

2000

3000

4000

5000

6000

2006 2007 2008 2009 2010 2011
Year

V
ul

ne
ra

bi
lti

es

(a) Vulnerabilities

0

100

200

300

400

500

600

11Q1 11Q2 11Q3 11Q4 12Q1 12Q2 12Q3
Quarter

C
ou

nt

Category
CSRF
DoS
File Inclusion
Overflow
SQL Injection
XSS

(b) Discl. vulnerabilities

0

2000

4000

6000

8000

10Q1 10Q2 10Q3 10Q4 11Q1 11Q2 11Q3 11Q4
Quarter

co
un

t

(c) Malware Sites

0

10

20

30

40

11Q1 11Q2 11Q3 11Q4 12Q1 12Q2
Quarter

T
hr

ea
ts Motivation

Non−Profit
Profit

(d) Mobile Threats

Fig. 1.1: Global threat landscape: The upper left plot shows the number of new
vulnerabilities found every year according to Symantec [2012]. The upper right plot
shows the number of new vulnerabilities disclosed by type by quarter according to
the non-commercial community project OSVDB [2012]. The lower left plot shows the
number of new sites actively hosting malware according to MDL [2012] The lower right
plot shows the number of mobile threats and their motivation according to F-Secure
[2012].

the start of the 1980s, it remained frozen as “design verification,” and
even the latter was no more common in practice in the mid-1990s than
it had been in the mid-1980s. [Mackenzie and Pottinger, 1997]

Unfortunately, these difficulties have not been solved yet. Constantly evolving
technologies even further aggravate the resulting damage. The so-called security
gap between defenders and defectors [see Schneier, 2012, chapter 16] therefore leads
to a rapid increase in potential harm if there are more innovations to exploit. This
thesis can be backed up by recent developments in network security: Figure 1.1a
shows the number of new vulnerabilities found every year according to Syman-
tec [2012]. Obviously, the innovation of new services and evolution of old ones
keep the number of new vulnerabilities, which can potentially be exploited, on a
constant high. According to Norton [2012], the costs of cybercrime amount to

14

1.1. Network Security and Machine Learning

$110 billion in just 12 months. Since numbers, especially cost estimates from se-
curity related corporations have to be handled with care (see for instance Maass
and Rajagopalan [2012] and the references therein for a stimulating discussion),
we also validate these numbers from a publicly available information source. The
number of new vulnerabilities disclosed by type by quarter according to the non-
commercial community project OSVDB [2012] are shown in Figure 1.1b: While
not as high as the numbers from Symantec [2012], we can still see that there is a
constant source of new vulnerabilities for the last few years. The next plot shows
the number of new sites actively hosting malware according to MDL [2012], giving
us a clear indication that these vulnerabilities are also actively exploited. New
emerging markets like mobile communication and tablets even boost the potential
damage: As can be seen in Figure 1.1d, the number of new threats against mobile
devices which are profit-oriented is definitely on the rise. Large scale, empirical
studies like Bilge and Dumitras [2012] analyzing the prevalence and time windows
of zero-day attacks or Dainotti et al. [2012] describing the emergence of a complete
Internet scan for vulnerable SIP servers even underline the constant threat poten-
tial in today’s networked society. In summary, we can see that there is a steady
level of both new vulnerabilities and deployment sites for malware. New emerging
markets like mobile devices and tablets show an increase in profit-oriented threats
displaying that there is an inherently organized driving force which will maintain
a constant threat level as long as there is technological development. If we want to
stop the expansion of this security gap, additional techniques are needed to confine
the damages.

Since formal verification methods of systems have proven to be extremely hard
to implement and maintain, other tools from classical computer science and statis-
tics are applied in computer security. Especially solutions bridging the gap between
the need of formal rigorousness and practical applicability like machine learning and
probabilistic methods in general are promising candidates to solve the problems of
computer security. The ability to extract knowledge and rules solely by describing a
pool of data by probabilistic models or geometric concepts enables the practitioner
to automatically learn the information needed from a large enough data base. A
first example of such an application of statistical solutions to the problem of in-
trusion detection showed up in the seminal work of Denning [1987]: By applying
probabilistic models like Chebyshev’s inequality, Markov process models, or other
time series models to audit records, abnormal behavior according to these models
can be expressed based on statistical measures. This so-called anomaly based ap-
proach to intrusion detection can be seen as a starting point for the application of
probabilistic methods and machine learning to computer security.

Years of research generated progress but from the viewpoint of the security
experts no conclusive picture: “Similar ideas are in some intrusion detection prod-
ucts, and it is still unclear whether they do a better job than methodically looking
for bit patterns that signify an attack. Still, this could someday be a big deal: If
fundamental advances ever occur in the field of A[rtificial]I[ntelligence] (a big ’if’),
it has the potential to revolutionize computer security” [see Schneier, 2004, page
362]. Similar opinions can be heard in the security community: Sommer and Pax-
son [2010] criticize the blind application of machine learning methods to security

15

1. Introduction

problems. By presenting new methods, which increase the classification accuracy
on some data sets without giving insights to the application domain expert, why
and how the method came to its decisions, nothing is gained:

In particular, we argue for the importance of obtaining insight into the
operation of an anomaly detection system in terms of its capabilities
and limitations from an operational point of view. It is crucial to ac-
knowledge that the nature of the domain is such that one can always
find schemes that yield marginally better ROC curves than anything
else has for a specific given setting. Such results however do not con-
tribute to the progress of the field without any semantic understanding
of the gain. [Sommer and Paxson, 2010]

Interestingly, in the domain of machine learning a similar, but broader claim was
uttered by Wagstaff [2012]: The machine learning community has lost its connec-
tion to real-world problems; instead of solving concrete challenges in an application
domain and communicating back the results, often evaluations are carried out on
some fixed benchmark data sets. As a remedy Wagstaff [2012] proposes some ma-
chine learning impact challenges, of which one is “a 50% reduction in cybersecurity
break-ins through ML defenses”.

This whole discussion shows, that there is an inherent need for machine learning
and statistics in the field of network and computer security. Classic approaches
have failed to keep track with continuous development and security risks are still on
the rise. Yet, it is of utter need not to apply these methods blindly; a meaningful
solution with an impact in the domain and community should be synchronized
with the inner workings of network security and give the domain expert insights
into the problems and learned models at hand.

1.2 Probabilistic Methods for Network Security

Successful application of machine learning and probabilistic methods in general
require that we understand the needs and demands of the domain experts. In case
of computer security, Schneier [2004, page 395] gives a nice overall picture of the
domain: “Security is not a product; it’s a process. [. . .] It is vital to understand
the real threats to a system, design a security policy commensurate with those
threats, and build in appropriate security countermeasures from the beginning.”

This basic security cycle is depicted in Figure 1.2. This cycle can be read in two
directions: For a first time installation we start from the analysis of the system to
build a detection model which implements our security policy. Based on this model
we are then able to respond to detected threats, therefore delivering appropriate
security countermeasures for the system at hand.

For an already implemented system based on these three building blocks, we
can read the cycle also in a different direction [Rieck, 2011]: After the detection of
novel threats, we have to analyze them and adjust our prevention system to trigger
the correct response.

16

1.2. Probabilistic Methods for Network Security

Analysis

DetectionResponse

Fig. 1.2: Security cycle.

Obviously, these three building blocks give us a
good starting point for a solid and helpful applica-
tion of machine learning and probabilistic methods to
network security: In the domain of analysis we can
aid the network expert with tools which enable him
to get an understanding of the infrastructure that he
wants to protect. We see in Chapter 2, that the pro-
posed methods can be used in both directions of the
security cycle: by analyzing the dynamical aspects of
collected network traffic we can build a model of the
network traffic exchanged in the infrastructure which

helps us to install the right detection model. On the other hand, given a pool
of malicious traffic, we can both describe its execution model and give structural
features for the accurate implementation of preventive countermeasures.

To learn a detection model from data, we first have to choose an appropriate
model class and then the correct parameters which are most suitable for the data
at hand. For instance, we might decide to solve a certain classification task with
a linear ν-support vector machine. Then, we have to find a matching ν parameter
which gives an upper bound on the fraction of training errors. These kinds of so-
called meta parameters are often tuned via cross-validation, which evaluates a grid
of possible parameter combinations by learning a model on part of the training data
and estimates the test error on the remaining data. This parameter-tuning process
can be quite time-consuming, since we have to learn several models on potentially
very large data sets. Chapter 3 shows the utilization of testing procedures to
speed up these computations by iteratively learning models on increasing subsets
of the data and dropping underperforming models on the way. By using testing
procedures we can control the risk of prematurely dropping the right parameter
combination and at the same time exploit the information of the whole data set
without wasting time for the calculation of unnecessary models.

After selecting a suitable detection model to protect a given network infra-
structure, one has to think about finding a response mechanism which in case of a
detection helps to keep up the protection without harming the functionality of the
infrastructure. In Chapter 4 we show how this can be accomplished in the domain
of web applications: By setting up an anomaly based web application firewall which
automatically learns anomaly models of specific parts of the HTTP protocol from
a collection of traffic, we are able to control the incoming requests to a specific
web service. If we find an anomalous token in a part of the request we can try to
disarm this potentially malicious attempt without risking too much harm, in case
the request is just a somehow different, legitimate request.

Throughout this work we will see, that the combination of machine learning
methods with the tools of classical statistics often yields a solution which leverages
the excellent performance of machine learning with statistical underpinnings a
domain expert needs to assess the risk of an operation or to fully understand the
details of the data at hand. A layered approach similar to best practice in software
design leads to a tool-chain of small, yet powerful steps. Due to decoupling and
modularization of each step we achieve an easily debuggable but in its totality

17

1. Introduction

extremely capable system. Each outcome of one step in this tool-chain is the
input for the following one. Since each step solves a small part of the whole
problem, the inner workings of the methods are still apparent and not hidden
inside an obscure algorithm. Similar to the structure of the Unix operating system
[Raymond, 2003] this layering approach serves well in all parts of the security cycle:
Careful intertwining with statistical procedures in the end leads us to powerful
probabilistic methods which helps to solve real-world problems in the domain of
network security.

1.3 List of Published Work

During the course of this work several results have been published. In this section
we give a brief summary of the main contributions of each chapter and how they
are reflected in the published work. Some of the publications form the core of
this written thesis and are therefore heavily cited. Furthermore, we introduce the
software packages which have been developed and released for public use.

Analysis In the analysis chapter we develop a method to efficiently analyze huge
collections of network traces. By embedding the data in a vector space and
pruning irrelevant dimensions with statistical testing methods, we can ex-
ploit redundancy in replicate-aware matrix factorization methods to find a
suitable subspace of even millions of messages very efficiently. After learning
the abstract state machine of a service with Markov models and applying au-
tomaton minimization algorithms from theoretical computer science, we can
extract even finer-grained templates and rules which can ultimately be used
to simulate network services. The core of the analysis chapter has been pub-
lished in Krueger et al. [2011] and Krueger et al. [2012a]. We have released a
CRAN (see R Core Team [2012]) package PRISMA which is publicly available
and contains the replicate-aware matrix factorizations and statistical feature
selection methods. Montavon et al. [2012] deal with the general analysis of
kernel methods to gain a better understanding of both the learned model and
the data problem.

Detection In the detection chapter we develop an efficient model selection pro-
cedure based on the representation of each possible model by the expected
risk on increasing subsets of the data. By dropping significantly underper-
forming models on the way we can save substantial computation time with
nearly no impact on the accuracy of the selected model. The main part of the
detection chapter has been published in Krueger et al. [2011b] and Krueger
et al. [2012b] and is currently under review in Krueger et al. [2012c]. We have
released a CRAN (see R Core Team [2012]) package CVST which is publicly
available and contains the complete model selection procedure and all the
learners used in the chapter as prepackaged methods suitable for the model
selection. Additional publications dealing with the matter of detection in
computer security are Rieck et al. [2010], Rieck et al. [2010a], Krueger and
Rieck [2012], and Schwenk et al. [2012].

18

Core References

Response In the response chapter we show, how the methods developed in the
analysis part can be put to use for intelligent responses in a network intru-
sion prevention system. By parsing the incoming requests, finding localized
embeddings, and learning token-based anomaly models, we can exploit the
focused structure of this approach and apply “minimally invasive surgery”
to potentially malicious parts of the request. The core of the response chap-
ter can be found in Krueger et al. [2010]. Additional response mechanisms
are described in Krueger et al. [2008] with a follow-up study of a real-world
deployment of the system in Schuster et al. [2010].

Overall, we will see that a successful application of probabilistic methods require
a layered approach similar to good practice in software design: The first step is
the physical preprocessing of the data which lays the ground for the probabilistic
preprocessing of the problem domain. This allows for a probabilistic description
of the data which subsequently is incorporated into powerful probabilistic models.
With these models, statistically sound reasoning about the problem domain can
be achieved giving the domain experts quantifiable and controllable risks in the
application of the found solutions. We have added the core publications in a
separate bibliography directly following this section for easier consultation.

T. Krueger and K. Rieck. Intelligent defense against malicious javascript code. PIK
- Praxis der Informationsverarbeitung und Kommunikation, 35(1):54–60, 2012.

T. Krueger, C. Gehl, K. Rieck, and P. Laskov. An architecture for inline anomaly
detection. In Proceedings of the European Conference on Computer Network
Defense (EC2ND), pages 11–18, 2008.

T. Krueger, C. Gehl, K. Rieck, and P. Laskov. TokDoc: A self-healing web applica-
tion firewall. In Proceedings of the 25th ACM Symposium on Applied Computing
(SAC), pages 1846–1853, March 2010.

T. Krueger, N. Krämer, and K. Rieck. ASAP: automatic semantics-aware analysis
of network payloads. Proceedings of the ECML/PKDD Conference on Privacy
and Security Issues in Data Mining and Machine Learning, 2011a.

T. Krueger, D. Panknin, and M. Braun. Fast cross-validation via sequential analy-
sis. In Neural Information Processing Systems (NIPS), Big Learning Workshop,
2011b. URL http://biglearn.org/index.php/Papers#paper2.

T. Krueger, H. Gascon, N. Krämer, and K. Rieck. Learning stateful models for
network honeypots. In Proceedings of the 5th ACM Workshop on Security and
Artificial Intelligence, AISEC ’12, 2012a.

T. Krueger, D. Panknin, and M. Braun. Fast cross-validation via sequential testing.
Computing Research Repository, abs/1206.2248, 2012b. URL http://arxiv.

org/abs/1206.2248.

T. Krueger, D. Panknin, and M. Braun. Fast cross-validation via sequential testing.
Journal of Machine Learning Research, in Review, 2012c.

19

http://biglearn.org/index.php/Papers#paper2
http://arxiv.org/abs/1206.2248
http://arxiv.org/abs/1206.2248

Core References

G. Montavon, M. L. Braun, T. Krueger, and K.-R. Müller. Analyzing local struc-
ture in kernel-based learning: Explanation, complexity and reliability assess-
ment. IEEE Signal Processing Magazine, in review, 2012.

K. Rieck, T. Krueger, U. Brefeld, and K.-R. Müller. Approximate tree kernels.
Journal of Machine Learning Research, 11:555–580, 2010a.

K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection and prevention of
drive-by-download attacks. In Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 31–39, 2010b.

I. Schuster, T. Krueger, C. Gehl, K. Rieck, and P. Laskov. Fips: First intrusion
prevention system. Technical Report 1, Fraunhofer FIRST, 2010. URL http:

//publica.fraunhofer.de/documents/N-148519.html.

G. Schwenk, A. Bikadorov, T. Krueger, and K. Rieck. Autonomous learning for
detection of javascript attacks: Vision or reality? In Proceedings of the 5th ACM
Workshop on Security and Artificial Intelligence, AISEC ’12, 2012.

20

http://publica.fraunhofer.de/documents/N-148519.html
http://publica.fraunhofer.de/documents/N-148519.html

Chapter 2

Analysis

Before delving into the subject of analyzing network data, we have to look at
the fundamental building block of network communication: The basis for network
communication is the Transmission Control Protocol (TCP) and Internet Protocol
(IP) suite. Developed in the 1970s, TCP/IP is a solid, layered approach to enable
the communication of systems even between different networks. Figure 2.1 shows
the steps involved when a client contacts a server on a conceptual level according
to RFC 1122 [Braden, 1989]: First, the request has to be encoded according to the
application protocol. Then this data is sent down the network stack, where subse-
quently parts of the transport layer, the internet layer and the physical link layer
are added, which control the actual transmission of the data to the corresponding
server. This can involve several hops via routers until the packet is received at the
server, which strips the packet of the link, internet and transport information and
just parses the application data. This parsed request triggers a state change in the
underlying execution model of the server and a corresponding reply message can
be generated.

At each layer we can start our analysis, for instance by setting up a flow analyzer
at a dedicated sensor in the network infrastructure and monitoring the network for
uncommon communication patterns on the transport or internet layer [McHugh,

Application

Transport

Internet

Link

Internet

Link

Internet

Link

Application

Transport

Internet

Link

S1

S3

S2

Data

Data

Data

DataUDP

UDP

UDP

IP

IPEth Eth

CLIENTSERVER LAN/WAN

Data

Fig. 2.1: Overview of network communication: The client sends its encoded request
down the network stack over the local or wide area network (LAN/WAN). The server
retrieves the raw data and is able to decode it and triggers the corresponding reply
according to its internal state machine.

21

2. Analysis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25%

50%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) Example in two dimensions

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Volume

E
dg

e
Le

ng
th

Dimension

1

2

5

10

20

(b)

Fig. 2.2: Curse of dimensionality: If we want to cover 25% of the volume of the
unit square, we need to sample from half the range of each dimension (see left plot).
For 50% of the volume this ratio rises to roughly 0.71 and is even bigger for higher
dimensions (see right plot).

2004, Taylor et al., 2009]. In this work we focus on the analysis of the application
layer, i.e. apart from session information which we infer from the transport layer
we ignore the lower layer information and focus on the semantics of the applica-
tion encoded in the data or so-called payload exchanged between a client and a
server. These messages carry the information which kind of action a client wants
to perform or what information should be transmitted to accomplish a certain task.

To this end we leverage methods from natural language processing like n-grams
and bag-of-words to embed the message in a vector space suitable for further pro-
cessing. We will see in Section 2.1.2 that this embedding is very high dimensional,
which can pose serious problems for learning methods: The so-called curse of
dimensionality [Bellman, 1961] describes the phenomenon, that the higher the di-
mension of the input space the bigger the volume of the data space. Therefore,
local learning methods suffer from the need to sample from a very wide range of
the room to cover the volume for an estimate with a reasonable variance if the
data is uniformly distributed in the space. This phenomenon is exemplified in Fig-
ure 2.2a for two dimensions: To cover 25% of the volume of the unit square, we
have to sample from half of the the range of both dimensions. Similarly, for 50%
of the volume we need

?
0.5 « 0.71 of the total range. Figure 2.2b generalizes this

observation for higher dimensions. We can see, that the range we have to sample
to cover a specific volume of the space increases rapidly with the dimension.

So if we deal with a high-dimensional space we have to take precautions to
make learning in this space feasible. We will see in the course of the treatment,
that we can eliminate the bulk of the dimensions by statistical tests, which focus
the analysis to those dimensions of the data, which carry interesting information.
This feature selection is backed up by data compression methods based on matrix

22

factorization, which exploits structural domain knowledge like part-whole relation-
ships and special tailored distance metrics to model the underlying data in a much
smaller subspace which circumvents the problems of these high-dimensional spaces.

While this approach alone can extract valuable information from the data, we
can even do better by incorporating dynamical data as encoded in the session in-
formation in our analysis: In the workflow of a network service specific kinds of
messages are often associated with specific states of the communication. For in-
stance for the file transfer protocol (FTP) a client first has to supply credentials like
username and password via the USER and PASS directive, before he can download
files from this server. This session handling is encoded in a state machine which
keeps track of the state of each session handled by the server.

Once a system is installed and in active use, specific usage patterns will occur.
Apart from workflows built into the protocol itself like the user credential process
mentioned above for FTP, other patterns might emerge, which are solely depen-
dent on the task at this specific site. For instance, a web server can host several
different web services, which all can implement different workflows on top of the
hypertext transfer protocol (HTTP). Thus, it is not sufficient to know the applica-
tion protocol syntax (in this case the HTTP grammar) but rather to look deeper
at the content of the messages to successfully recover the underlying semantics of
the workflows. Apart from being a valuable tool for the system administrator at
a site, the inferred model of communication can be used for the active protection
of this concrete infrastructure: If used in a generative fashion, the model can act
as a so-called honeypot in the infrastructure. The only purpose of these honeypots
is to lure potential attackers and gather information about their intents and the
general threat potential in the infrastructure. Furthermore, the extracted message
templates give valuable information of the structure and content of the commu-
nication that takes place at the site, enabling the system administrator to find
focused detection models specially tailored for the site.

In this chapter we present a probabilistic approach to model both the message
content and the underlying state machine from network traffic. By inspecting the
message interplay between client and server based on a preceding event identifica-
tion, our model is capable of learning an approximation of the state machine of the
service, which not only captures the behavior but can also be used in a generative
fashion for simulating long communication sessions.

The main contributions of this protocol inspection and state machine analysis
(PRISMA) are as follows:

1. Our method is able to learn a stateful model from the network traffic of a
service that can be used for simulating valid communication.

2. To construct this model, our method infers the message format, the state
machine as well as rules for propagating information between states using
probabilistic methods.

3. Our method builds on special tailored embedding and clustering techniques
that allow for large-scale applications with millions of network messages.

23

2. Analysis

A B

C

GET

200

A

C

PUT x 200

GET bar 200 bar

GET foo 200 foo

PUT sec 200

200

Messages Markov modelVectors

Transfer field

A
B

C

A B

C

GET

200

A

C

PUT x 200

GET bar 200 bar

GET foo 200 foo

PUT sec 200

200

(200)

(GET)
(PUT)

Events Templates & Rules

Embedding Clustering Inference Templating

Fig. 2.3: Overview of the Protocol Inspection and State Machine Analysis (PRISMA).

Section 2.1 describes the individual steps of PRISMA. After evaluating PRISMA
on different data sets in Section 2.2 and Section 2.3, we give a detailed account of
practical extensions to the PRISMA framework and related work in Section 2.4.
Further directions and application domains are outlined in Section 2.5, which con-
cludes the chapter. Appendix B.1 gives a complete example of a PRISMA model
based on a simple toy problem: Given network traces of a robot communicating
with its environment, a behavioral model is learned via PRISMA.

2.1 The PRISMA Method

Given a collection of recorded traffic of a specific network service, the goal of
PRISMA is to extract a state machine with associated templates and rules, which
describe the information flow from message to message. After a first preprocessing
stage, where the raw network traffic is converted to sessions containing messages,
our method proceeds in the following steps (see Figure 2.3):

1. To find common structures in the data, we first define a similarity measure
between messages. This is done by embedding the messages in special vec-
tor spaces which are reduced via statistical tests to focus on discriminative
features (see Section 2.1.2).

2. We proceed by modeling each session of messages as a sequence of events.
By leveraging the embedding of the previous step we apply part-based or
position-based clustering which groups individual messages into events (see
Section 2.1.3).

3. Each of the extracted sequences of events can be seen as a path through the
protocol’s state machine. To infer an approximation of this state machine, we
use the probabilistic concept of Markov models, where transitions are linked
with probabilities (see Section 2.1.4).

4. Finally, we automatically generate templates for the messages associated with
each state of the Markov model and derive rules that describe the information
flow between the different states during a communication (see Section 2.1.5).

Throughout the chapter we use the term message as an atomic exchange of
a byte sequence between a client and server. An event describes a certain action

24

2.1. The PRISMA Method

on the client or server side which is directly connected with the state machine of
the modeled network service. A template is a message structure consisting of a
sequence of tokens and fields. Rules describe the message flow between the fields
of consecutive templates instantiated for a concrete session.

2.1.1 Preprocessing of Network Data

To learn the inner structure and behavior of a specific network service we first
have to collect sufficient data for the inference. Normally, this can be done at a
dedicated sensor, which collects the raw packet data in a binary format for instance
via the tool tcpdump. Apart from the payload, each packet contains a source
and destination address. To actually reconstruct the information flow between a
client and a server, these packets have to be re-assembled to eliminate artifacts
from the network and transport layer. For this task we have devised a network
recorder which uses the mature library Libnids for re-assembling TCP and UDP
communication streams.

These streams are the input for a session extractor, which generates for each
re-assembled packet payload a specific session identifier according to the source
and destination of the packet. If two packets occur with a very small delay of
τmsg milliseconds, the payloads will be merged. If a specific session identified by
its source and destination does not have any more communication within τsession

milliseconds, the corresponding session will be flagged as terminated, such that any
other message arriving with this specific source/destination combination will open
a new session.

This network recorder and session extractor preprocesses the raw network traces
into sessions containing messages. In the following we will use this preprocessed
data in the subsequent steps of the analysis.

2.1.2 Embedding of Messages

After the preprocessing, a message x can be modeled as sequence of bytes, that
is, x P B‹, with B “ t0, . . . , 255u. To infer common structures from a pool of
messages we need a similarity measure which is capable of focusing the analysis on
discriminative features. To account for different styles like binary versus textual
protocols we introduce two different embeddings both of which can be compressed
via statistical tests to enable a more focused analysis.

Embedding with n-grams

One common approach from the domain of natural language processing is to map
byte sequences into a finite-dimensional feature space whose dimensions are asso-
ciated with n-grams, substrings of fixed length n. Formally, we can describe these
substrings as W “ Bn and define an embedding function φ : B‹ ÞÑ R|W | as follows

φpxq :“ pφwpxqqwPW with φwpxq :“ occwpxq

25

2. Analysis

which simply records, whether a specific n-gram w occurs in a given string. For
instance,

φp”Hello”q “ p0, . . . ,
Hel
1 ,

ell
1 ,

llo
1 , . . . , 0qT P R16777216

for n “ 3. From this example we can see that the corresponding feature space has a
finite but high dimensionality. However, this space is generally sparsely populated,
which allows for efficient data representation [Rieck and Laskov, 2008].

Embedding with Tokens

Another well-known concept from the domain of natural language processing is
the tokenization of a byte sequence via pre-defined separator characters S. This
embedding φ : B‹ ÞÑ R|W | maps the byte sequence to a feature vector, which
records the occurrences of all possible words W according to the separators, that
is, φpxq :“ pφwpxqqwPW . For example, if we consider the set of separators S “ t u,
we get the following embedding

φp”Hey ho, let’s go”q “ p0, . . . ,
Hey
1 ,

ho,
1 ,

let’s
1 ,

go
1 . . . , 0qT P R|W |.

Similarly to the n-gram embedding, the dimension of the resulting feature space is
large but sparsely populated, therefore efficient storage models are also available
[Rieck and Laskov, 2008].

Dimensionality Reduction

For finding structure in network communication, the analysis has to focus on fea-
tures which discriminate the messages in the data pool. Volatile features, like
randomly generated nonces or cookies, will only occur once and lead to an un-
necessary bloated vector space. The same holds true for constant tokens of the
protocol, since their occurrence in a message will be almost certain.

Consequently, we use a statistical test-driven dimension reduction, which allows
us to split the feature space as follows: F “ FconstantYFvariableYFvolatile. To this
end, we apply a binomial test (see Appendix A.4) to each feature, whether it
is distributed with a frequency of approximately 1 (corresponding to a constant
feature) or 0 (a volatile feature, respectively). After application of a multiple
testing correction according to Holm [1979] we keep only those features, which are
not constant and not volatile given a statistical significance level of α “ 0.05. To
further simplify the feature space, we unite features which exhibit a correlation
near to one.

Given these embeddings and the dimension reduction technique, we are now
able to define a data-driven feature space for messages, which allows us to introduce
geometrical concepts like metrics (see Appendix A.1). This opens up the whole
field of machine learning tools to be applied for network communication. In the
following we will assume, that of the total number of features f “ |W | the dimen-

sion reduction methods keeps just f̃ “ |ĂW | features. The embedding function φ is
adjusted accordingly, i.e. silently returns just the f̃ reduced features.

26

2.1. The PRISMA Method

2.1.3 Clustering for Event Inference

Messages which occur at specific events in the flow of communication often exhibit
similar structural features. Thus, to extract event information we can exploit this
structural dependency. Inside a vector space we can define a metric to capture our
notion of the similarity between two messages. For instance the Euclidean metric

depx, yq :“

d

ÿ

wPĂW

pφwpxq ´ φwpyqq2

calculates the distance between two points based on the occurrence of the |ĂW |
words contained in the corpus. Using these metrics clustering algorithms can be
applied to extract common structures in a data pool and thereby indirectly recover
the underlying event information.

For inferring structure from network protocol traces we suggest two possible
clustering techniques: One for protocols, which are assembled of parts and one for
monolithic communication, where tokens are weighted according to their absolute
position in the message. Obviously, the experimenter is free to choose an appro-
priate clustering technique for the data at hand, but we found these two methods
to work best with protocol data of the described kind.

Part-Based Clustering via Matrix Factorization

The mapping of network payloads to a vector space induces a geometry, reflect-
ing characteristics captured by the reduced number of feature f̃ . For instance,
payloads sharing several substrings appear close to each other, whereas network
payloads with different content exhibit larger geometric distances. This vectorial
representation of network data enables us to identify semantic components ge-
ometrically (see Appendix A.1). In particular, we apply the concept of matrix
factorization for identifying base directions in the vector space. Given a set of
payloads P “ tp1, . . . pNu we first define a data matrix A containing the vectors of
P as columns by

A :“ rφpp1q, . . . , φppN qs P Rf̃ˆN .

For determining components, we seek a representation of A that retains most
information but describes A in terms of few base directions. This can be achieved
in terms of a matrix factorization of A into two matrices B P Rf̃ˆe and C P ReˆN
such that e ! f̃ and

A « BC “

basis
hkkkkkkikkkkkkj

“

b1 . . . be
‰ “

c1 . . . cN
‰

looooooomooooooon

coordinates

. (2.1)

The columns b1, . . . , be P Rf̃ of B form a new basis for the N payloads, where
the dimensions of each base direction bi are associated with the feature set ĂW . As
we show in later experiments, this relation of base directions and the feature set
can be exploited to construct templates from a matrix factorization. The columns

27

2. Analysis

c1, . . . , cN P Re of C form a new set of coordinates for the payloads in a low-
dimensional space. These coordinates can be used for visualization of the data in
a low-dimensional space.

Another interesting interpretation of matrix factorization models in the domain
of document clustering according to Smyth is as follows: If the documents are
generated according to some underlying latent topics zj , j P t1, . . . , eu and each
topic generates a specific word with probability P pwi|zjq and a specific document
is assigned to a topic with probability P pzj |dq, then the probability that a specific
word occurs in the document d can be expressed as follows:

P pwi|dq “
e
ÿ

j“1

P pwi|zjq
looomooon

bij

cjd
hkkikkj

P pzj |dq,

such that the matrix factorization A “ BC can also be interpreted as a probabilistic
topic model, if the rows in B and columns in C satisfy the axioms of probability
(see Appendix A.2).

In general, matrix factorization methods differ in the constraints imposed on the
matrices B and C. In this chapter, we study two standard techniques widely used
in the field of statistics and data analysis: Principal components analysis (PCA)
[Jolliffe, 1986] and non-negative matrix factorization (NMF) [Lee and Seung, 1999].

Principal Component Analysis (PCA) In PCA, we seek base directions, which
are orthogonal and capture as much of the variance inside the data as possible.
Formally, the ith direction bi consecutively maximizes the variance of AJbi under
the constraint that all base directions are mutually orthonormal:

bi “ arg max
}b}“1

var
`

AJb
˘

s.t. b K bj , j ă i.

In this setting the matrix factorization (2.1) corresponds to a singular value
decomposition of A: The L orthonormal basis vectors in B equal the first L left-
singular vectors of A, and the coordinates C correspond to the first right-singular
vectors of A, multiplied by their singular values. In PCA, all entries of B are
typically non-zero, hence each feature contributes to a basis vector bi. Note, that
there exist kernel-based PCA [Schölkopf et al., 1998] which are more powerful but
lack the direct interpretability of the extracted components as needed in this setup.

Non-Negative Matrix Factorization (NMF) NMF describes the data by an ap-

proximation of the whole embedding matrix A P Rf̃ ,N containing N data points
with f̃ reduced features by two strictly positive matrices B P Rf̃ ,e, C P Re,N :

A « BC with pB,Cq “ arg min
B,C

}A´BC} (2.2)

s.t. bij ě 0, cjn ě 0 .

28

2.1. The PRISMA Method

The inner dimension e of the matrix product BC is chosen, such that e ! f̃ leads to
an even more compact representation. Due to the positivity constraint, the matrix
B can be interpreted as a new basis (the parts of a message), while the matrix C
contains the coordinates in this newly spanned space (the weights of the different
parts). These coordinates are used to ultimately assign a message to a cluster by
finding the position with the maximal weight. As shown by Ding et al. [2008], NMF
is equivalent to latent semantic indexing by Hofmann [1999], a special kind of topic
model, which renders NMF especially useful in the context of document clustering.
For instance, the cover illustration shows the tokens of the three base vectors of
an NMF applied to a stemmed and tokenized version of the main chapters of this
thesis split up by sections. The three components accurately reflect the contents
of the three chapters, which are originally distributed over 15 sections.

There are several methods for solving Equation 2.2 (see for instance Paatero
and Tapper [1994], Lee and Seung [1999], Hoyer [2004], Heiler and Schnörr [2006]).
Here we stick to a practical implementation as introduced in Albright et al. [2006]:
Based on the alternating least squares approach we alternately solve the following
constraint least square problems given the regularization constants λB, λC

min
C

}A´BC}2 ` λC}C}
2 (2.3)

min
B

}AJ ´ CJB}2 ` λB}B}
2 (2.4)

with the corresponding solutions

C “
`

BJB ` λBI
˘

BJA (2.5)

B “
`

CCJ ` λCI
˘

CAJ . (2.6)

The regularization constants can be treated as a meta parameter of the proce-
dure which we choose by cross-validation. Since both the number of features and
the number of samples in the matrix A can get quite large (for instance the FTP
data set introduced later contains roughly 1.8 million samples and 90,000 features),
direct calculation of Equations (2.5) and (2.6) often is infeasible.

Therefore, we devise a reduced, equivalent problem, taking into account that
after the dimension reduction step of Section 2.1.2 we have duplicates in our data

matrix A “ ra1, . . . , aN s, i.e. denote by rA P Rf̃ˆ rN the matrix without duplicate
columns. For the simplification of Equation (2.3) note, that

ci “
`

BJB ` λCI
˘

BJai.

Hence, we can replace A by rA in Equation (2.5) to obtain rC and then duplicate
the resulting rci accordingly to retrieve C. For the simplification of Equation (2.4)
note, that

}AJ ´ CJB}2 “ } rAJ ´ rCJB}2W (2.7)

29

2. Analysis

with W the rN ˆ rN diagonal matrix consisting of the number of duplicates of the
corresponding column in rA. As shown in Holland [1973], the optimization problem
of Equation (2.4) with the right side of Equation (2.7) as new objective can be
solved by

B “

´

rCW rCJ ` λI
¯

rCW rAJ .

These two simplifications allow us to apply NMF even to large data sets with no
reduction in accuracy. In Appendix B.2 we describe this replicate-aware version of
the NMF algorithm in detail together with the estimation heuristic for the inner
dimension e and the applied initialization scheme.

Position-Based Clustering

While matrix factorization techniques are a good choice for protocols, where a
message is constructed out of parts, some protocols show very position-dependent
features. Since the clustering step in PRISMA is totally independent from the
concrete algorithm used, as long as the procedure assigns a cluster label to each
message, the experimenter is not fixed to a matrix factorization method but is free
to choose an appropriate clustering tool of his choice. To take position-dependent
features into account, we propose a weighted distance measure

dwpx, yq :“

d

ÿ

wPĂW

p101´ppw,xqφwpxq ´ 101´ppw,yqφwpyqq2,

where ppw, xq returns the position of token w in string x. This distance measure
can be used to calculate the distance matrix D, which subsequently forms the
input to single linkage hierarchical clustering. Note that we can also restrict the
calculation of the distance matrix to the reduced data matrix rA. This not only
saves computing time but also keeps the size of D in a reasonable range.

2.1.4 Inference of State-Machine

Network communication is driven by an underlying state machine, in which certain
events trigger certain responses and switches to proceeding states. Sometimes,
these switches are probabilistic by nature (for instance a service is temporarily
unavailable) or can be modeled as such (for instance in a login procedure 90% of
the attempts are successful).

One possible way to model the state machine of a network service in a proba-
bilistic way is by a hidden Markov model : The unobserved states correspond to the
internal logical states of the service and the messages sent over the network corre-
spond to emitted symbols. Using the Baum-Welch algorithm [Baum and Eagon,
1967] and enough data of service communication, it would be possible to estimate
an underlying hidden Markov model to describe the observed data. However, the
Baum-Welch algorithm does not guarantee that the found model has the highest
likelihood in a global sense.

30

2.1. The PRISMA Method

Learning the Markov Model

Instead of directly trying to infer the underlying hidden Markov model, we start
with a regular Markov model which we will later on simplify to a minimal hidden
variant. The whole learning process is therefore deterministic and has no inherent
randomization like the initial model matrices in the Baum-Welch algorithm (see
Appendix A.3 for details). With this approach we circumvent the problem of
finding a potential non-optimal model. This determinism comes at a price: it
is a well-known fact that hidden Markov models are more powerful than regular
ones [Fraser, 2008]. In summary we trade the potential uncertainty with a decrease
in model complexity, therefore regularizing the hypotheses space.

Given the session information of the preprocessing step and the label infor-
mation for each message of the event clustering, we could directly learn a regular
Markov model of event sequences by estimating the initial and transition probabili-
ties by their maximum likelihood estimates. However, in this simple Markov model
we would drop the direction of the event (i.e. was an event triggered by the client
or the server) and limit the history to one message due to the Markov assumption
(i.e. the generation of the next event depends just on the previous one). Especially
the last limitation would be too strict for network communication, since we would
loose the context in which a message would have been generated.

Convoluting the State Space

To circumvent the limitation of the regular Markov model, we use a convoluted
and communication-annotated version of the event sequence of a session as follows:

1. Each event will be annotated to reflect, whether it was generated from the
client or the server side.

2. For a horizon of k we convolute the annotated and padded event sequence by
sliding a window of size k over it and recording the occurring k-tuples.

As an example, assume we have observed the event sequence rabcds where the
messages were generated alternatingly from the client and server. With a horizon
of k “ 2 we would convolute this event sequence to

rpH,Hq, pH, aCq, paC , bSq, pbS , cCq, pcC , dSqs.

So the new, convoluted event space rE will contain p2|E|`1qk potential events, with
pH,H, . . . ,Hq being the starting state. By calculating the transition probabilities
in this new convoluted event space rE by their maximum likelihood estimates, we
specify a regular Markov model with an annotated event horizon of k.

Minimizing the Markov Model

For client server communication a horizon of at least k “ 2 is necessary to keep the
communication context. For more involved processes an even higher horizon might
be necessary, which leads to an exponential growth of possible states. We will see in

31

2. Analysis

the evaluation section, that for real network communication this convoluted state
space is often very sparsely populated, yet the resulting networks can be large,
making the introspection by a human user difficult.

As a remedy we propose the following minimization algorithm to boil down the
size of the Markov model while preserving its overall capabilities:

1. Transform Markov model M into a deterministic finite automaton (DFA) xM :

a) Keep transitions which have a probability bigger than zero and their
associated states.

b) At each transition the DFA xM accepts the new event of the second state
(for example the transition connecting state paC , bSq with state pbS , cCq
would consume event cC).

2. Apply the DFA minimization algorithm as introduced in Moore [1956] to get

the equivalent DFA ĂM with the minimal number of states but accepting the
same language.

3. As a side effect, the algorithm returns an assignment A
rE,ĂM

of the original

states of the convoluted event space rE to the states of the DFA ĂM .

The resulting DFA ĂM can be used for the inspection of the underlying state
model and can be interpreted as a special hidden Markov model: Instead of ob-
serving the convoluted events rE we now observe the states of ĂM according to
the assignment A

rE,ĂM
found by the minimization algorithm. These meta-states

subsume equivalent states, and will therefore lead to the acceptance of the same
event sequences as the original model. We will show in the evaluation section, that
these simplified models drastically decrease the model size and are therefore good
candidates for the analysis of the state machine by a human administrator.

2.1.5 Learning Templates and Rules

Each session can be seen as a sequence of events which trigger specific state switches
in the state machine. To learn the general information flow during this process,
we generalize the messages associated with a state to a template that consists of
fixed and variable parts, which often are filled by contents of previous messages.
While methods like matrix factorization allow for the extraction of static templates
without taking dynamic information into account, session information can be used
to even extract such filling rules. So, exploiting the learned Markov model we
are now ready to give a procedure to reliably extract templates and rules for the
network service at hand.

Inference of Templates

In the event clustering step, we focused on variable, yet neither constant nor volatile
features to identify common patterns in the exchanged messages. While this focus
makes sense for the identification of underlying events, it is essential to have all
features back for the generation of valid, protocol-conformant messages.

32

2.1. The PRISMA Method

State AS State BC State CS

Session 1 ftp 3.14 USER anon 331 User anon ok

Session 2 ftp 3.12 USER ren 331 User ren ok
...

...
...

Session n ftp 2.0 USER liz 331 User liz ok

Template ftp l USER l 331 User l ok

Fig. 2.4: Example of template generation for a simplified FTP communication.

An additional aspect for the extraction of generic message templates is the un-
derlying state machine of the analyzed service: it is very likely, that the exchanged
messages correlate with the current state of the service. Thus, a valid assumption
is to assign the messages of each session to its according state in the previously ex-
tracted state machine as shown for an artificial example in Figure 2.4: By looking
for recurring tokens in each state, generic templates can be constructed containing
fixed passages and variable fields according to the distribution in the learning pool.

In more detail, the template inference procedure is structured as follows:

1. Tokenize each message according to the previously chosen embedding.

2. Assign the message of each session to the state of the inferred Markov model.

3. For each state of the Markov model:

a) Group all assigned messages with the same number of tokens and process
each of these groups.

b) If all messages in a group contain the same token at a specific position,
a fixed token is recorded at the resulting template, otherwise a variable
field is saved.

At the end of this procedure we will have templates for each state of the Markov
model representing the generic messages that might occur. Note that each state
might have several different templates assigned according to the observed length
distribution: I.e., we simplify the multiple alignment procedure for the extraction
of generic templates by focusing the alignment to messages of the same length.

Inference of Rules

Finding rules for filling specific fields in these templates according to previously seen
messages now amounts to a simple, yet powerful combination of the Markov model,
extracted templates, and session information. For each possible combination of
template occurrences of the horizon length k, i.e., pt1, t2, . . . tkq:

1. Find all messages which are assigned to these k templates and occur in a
session in this exact order.

2. For each field f in the template tk:

33

2. Analysis

Rule Description

Copy Exact copy of the content of one field to another.
Seq. Copy of a numerical field incremented by d.
Add Copy the content of a field and add data d to the front or back.
Part Copy the front or back part of a field split by separator s.
Data Fill the field by randomly picking previously seen data d.

Tab. 2.1: Rules which are checked during model building. Parameters like d and s are
automatically inferred from the training data.

a) Look for a rule to fill f with field content f̂ “ f of templates pt1, t2, . . . tkq
in F% of the sessions.

b) If no rule matches, just record the tokens that occur in the training pool
(Data rule).

The checked rules are described in Table 2.1. This procedure ensures that
information that is found in preceding messages which can systematically reproduce
contents in a following message in F% of the cases will get copied over. For instance
in the example shown in Figure 2.4 we can observe that in all cases the field of
the template associated with state C can be filled with the field of the previous
message. The Data rule acts as a fallback solution if no match could be found and
as a pump-priming rule for the first messages of a session.

2.1.6 Simulation of Network Communication

The inferred PRISMA model now contains three parts: the actual Markov model,
the inferred templates and the rule sets associated with these templates. To use
these parts of a PRISMA model for simulation of a communication we devised the
Lively Essence Network Sensor (LENS) depicted in Algorithm 1.

In addition to the inferred model parts, this module is initialized with the role
(client or server) which should be simulated. Note that the PRISMA model itself is
role-agnostic and therefore can be used to simulate both sides of a communication.
This allows us to even let the model talk to itself by running two instances of LENS
with different roles and passing the messages generated from one instance to the
other and vice versa.

2.2 Evaluation of Stateless Communication

After presenting the PRISMA method, we turn to an empirical evaluation of its
capabilities in different security applications. First, we focus on the evaluation of
stateless communication which features the evaluation of the first part of the pro-
cessing chain, namely the embedding and matrix factorization step. Apart from
giving valuable insights to the inner workings of the first steps of our method we

34

2.2. Evaluation of Stateless Communication

Algorithm 1 The Lively Essence Network Sensor (LENS)

1: function LENS(markovModel, templates, rules, role)
2: while communication is active do
3: Wait for message with timeout t
4: if message M received then
5: Find matching template T according to the

current state
6: Split the message M according to T into fields
7: Switch the state to the state associated to T
8: Randomly choose the state S according to the

transition probabilities of markovModel
9: if S is in accordance with role then

10: Find rule set according to the previous
k (horizon) templates

11: Apply rules to fill the new template to form
the message

12: Send out message
13: Set current state to S

show, that the extracted components of the matrix factorization can be used to
construct stateless templates from the resulting base directions. The inclusion
of dynamic information of stateful communication in form of session information
enables us in Section 2.3 to further refine these templates according to their occur-
rences in the lifetime of a session.

For the evaluation of stateless content, we first study the framework on a toy
data set, which allows us to establish an understanding of how static templates are
inferred from communication and compare the performance of the different matrix
factorization methods (Section 2.2.1). We then proceed to real-world applications,
where network traces containing malicious communication are analyzed for static
templates, such as exploited vulnerabilities and attack sources (Section 2.2.2). Fi-
nally, we apply our method in the context of network anomaly detection by limiting
the processing of network data to the reduced space giving us a huge performance
increase while attaining the accuracy of the full data space (Section 2.2.3).

2.2.1 Matrix Factorization Methods

For our first experiment, we consider an artificial data set of HTTP communication
where we have total control over protocol syntax and semantics. We simulate a web
application supporting three different types of requests, whose network payloads
are depicted in Figure 2.5. The first payload reflects a request for static content,
the second payload resembles a search query and the last payload corresponds to
an administrative request, in which the action parameter is one of the following
rename, move, delete or show. All requests are equipped with random parts (the
name of the static web page, the search string and the administration parameter)
to simulate usual fluctuation of web traffic.

35

2. Analysis

GET static/3lpAN6C2.html HTTP/1.1

Host: www.foobar.com

Accept: */*
Request for static content

GET cgi/search.php?s=Eh0YKj3r3wD2I HTTP/1.1

Host: www.foobar.com

Accept: */*
Search query

GET cgi/admin.php?action=rename&par=dBJh7hS0r5 HTTP/1.1

Host: www.foobar.com

Accept: */*
Administrative request

Fig. 2.5: Example payloads of the artificial data set.

Symbols

1) static 5) rename

2) cgi 6) move

3) (search.php ^ s) 7) delete

4) (action ^ admin.php ^ par) 8) show

Tab. 2.2: Extracted feature set for the artificial data set. Strings co-occurring in
network payloads are coupled using the ^ operator.

Using this web application, we generate a data set of 1,000 network payloads
with a uniform distribution of the three request types. We then apply the first part
of the PRISMA method to this data set as detailed in Section 2.1.1 and Section 2.1.2
using tokens as basic strings with delimiters selected according to the specification
of HTTP [Fielding et al., 1999]. Based on the extracted feature set, we then apply
matrix factorization algorithms, namely Principal Component Analysis (PCA) and
Non-negative Matrix Factorization (NMF) for determining base directions in the
vector space of payloads. Finally, we construct static templates for these base
directions.

We present the extracted feature set in Table 2.2. The feature set consists of
eight symbols and corresponds to relevant strings of the underlying web application.
Constant and volatile tokens have been filtered, while tokens co-occurring in the
communication have been coupled as indicated by the ^ operator. Note that the
feature set does not contain tokens related to HTTP syntax and thereby differs
from previous approaches reconstructing protocol grammars and specifications.

Results for the application of matrix factorization algorithms to the artificial
data set are visualized in Figure 2.6. For the algorithms PCA and NMF, base
directions (matrix B) are shown, where the x-axis details the different directions
and the y-axis the contribution of individual feature set symbols.

While both techniques perform a matrix factorization of the payload data, the

36

2.2. Evaluation of Stateless Communication

1 2 3 4 5 6 7 8
static

search.php

cgi

move

rename

delete

show

action

(a) PCA

1 2a 2b 3 4 5 6 7

static

search.php

cgi

move

rename

delete

show

action

(b) NMF

Fig. 2.6: Visualization of bases for PCA and NMF on the artificial data set. Colors
signify the intensity of the entry ranging from -1 (red) to 1 (blue).

matrices differ significantly. PCA yields positive and negative contributions in the
matrix B indicated by different colors. Although a certain structure and relation of
feature set symbols may be deduced from the matrix, a clear separation of different
elements is not possible. By contrast, the NMF matrix shows a crisp representation
of the base directions. Static and search requests are clearly reflected in individual
base directions. The remaining base directions correspond to administrative re-
quests, where different combinations of action types and other feature set symbols
have been correctly identified.

Due to this superior performance, we restrict our analysis to base directions
determined using the NMF algorithm in the following. Static templates resulting
solely from the positive entries of the NMF matrix in Figure 2.6 are presented in
Table 2.3. The templates accurately capture the semantics implemented in the
simple web application. A set of seven templates is constructed which covers static
access of web content, search queries and different administrative tasks. Note that
two base directions in Figure 2.6 are identical, resulting in a total of seven static
templates. The templates even exhibit hierarchical structure: template 3 resembles
a basic administrative request with all following templates being special cases for
particular administrative actions.

2.2.2 Analysis of Honeypot Data

Network honeypots have proven to be useful instruments for identification and
analysis of novel threats. However, the amount of data collected by honeypots is
immense, such that manual inspection of network payloads becomes tedious and
futile. The PRISMA method allows for analyzing such big data sets of unknown
traffic and extracts semantically interesting network features automatically. We il-
lustrate the utility of our framework on network data collected using the web-based

37

2. Analysis

Static Templates

1) static

2) cgi ^ (search.php ^ s)

3) cgi ^ (action ^ admin.php ^ par)

4) cgi ^ (action ^ admin.php ^ par) ^ move

5) cgi ^ (action ^ admin.php ^ par) ^ rename

6) cgi ^ (action ^ admin.php ^ par) ^ delete

7) cgi ^ (action ^ admin.php ^ par) ^ show

Tab. 2.3: Static templates extracted for the artificial data set. The templates have
been constructed using tokens as basic strings and NMF for matrix factorization.

honeypot Glastopf.1 The honeypot captures attacks against web applications, such
as remote file inclusions (RFI) and SQL injection attacks, by exposing typical pat-
terns of vulnerable applications to search engines. The honeypot has been deployed
over a period of two months and collected on average 3,400 requests per day. For
our experiments, we randomly pick 1,000 requests from the collected data and ap-
ply our framework using tokens as underlying feature set. In particular, we extract
40 static templates using the base direction identified by NMF from the embedded
HTTP payloads. The templates are shown in Table 2.4.

The extracted static templates can be classified into three categories: semantics
of malware, vulnerabilities and attack sources. For example, the first templates
reflect different options supplied to a web-based malware. Malicious functionality
such as preparing a remote shell (shellz), setting up an IRC bouncer (psybnc) or
scanning for vulnerable hosts (scannerz) are clearly manifested in strings of the
templates. The following templates characterize vulnerabilities of web applications
including corresponding file and parameter names. The following set of templates
corresponds to domain and host names used as sources of remote file inclusions.
Often not only the originating host but also parts of the complete URL have been
discovered. Finally, the method also extracts some miscellaneous templates which
cannot directly be mapped to vulnerabilities.

Note that although the templates have been generated from raw HTTP traffic,
no syntactic and protocol-specific strings have been extracted, demonstrating the
ability of PRISMA to focus on semantics of communication. This feature could aid
the security specialist in the overall signature engineering process [see for instance
Schmerl et al., 2008] with valuable hints regarding the essential tokens of an attack.

2.2.3 Effectivity of Embedding

To show the effectivity of the embedding we evaluate the capabilities of PRISMA
for the application of network intrusion detection. Techniques of anomaly detection
are frequently applied as extension to signature-based intrusion detection systems,

1Glastopf Web Application Honeypot, see http://glastopf.org

38

2.2. Evaluation of Stateless Communication

Static Templates Description

modez ^ shellz ^ csp.txt Semantics of RFI malware
modez ^ psybnc ^ csp.txt —
modez ^ botz ^ bot.txt —
modez ^ scannerz ^ bot.txt —

mosConfig.absolute.path ^ option ^ http Vulnerability (VirtueMart)
mosConfig absolute path ^ option ^ Itemid —
com virtuemart ^ show image in imgtag.php . . . —
com virtuemart ^ export.php ^ php.txt —
shop this skin path ^ skin shop ^ standard . . . Vulnerability (Technote)
board skin path ^ Smileys ^ http Vulnerability (GNUBoard)
board ^ skin ^ http —
write update.php ^ files ^ 1 —
write comment update.php ^ files ^ http —
delete all.php ^ admin ^ zefa.txt —
delete comment.php ^ http ^ fx29id1.txt —
appserv ^ appserv root ^ main.php Vulnerability (Appserv)
SERVER ^ DOCUMENT ROOT ^ media Vulnerability (PHP)
error.php ^ dir ^ 1 Misc. RFI vulnerabilities
errors.php ^ error ^ php.txt ^ bot.txt —
administrator ^ index.php ^ raw.txt —
admin ^ include ^ http —

med.buu.ac.th ^ com mylink ^ stealth . . . Sources of attacks
med.buu.ac.th ^ com mylink ^ components . . . —
http ^ www.hfsb.org ^ sites ^ 10225 ^ img —
zerozon.co.kr ^ eeng ^ zefa.txt —
http ^ zerozon.co.kr ^ photos ^ count —
http ^ musicadelibreria.net ^ footer —
qqe.ru ^ forum ^ Smileys —

modules ^ index.php ^ files Miscellaneous templates
data ^ http ^ path —
includes ^ path ^ raw.txt —
%20%20 ^ http ^ zefa.txt —
index.php ^ option ^ Itemid —
http ^ lib ^ sourcedir —
skin ^ zero vote ^ http —
id2.txt ^ http ^ id —
images ^ http ^ bjork.txt —
spread.txt ^ media ^ path —
bbs ^ bot.txt ^ skin —
id1.txt ^ http ^ id —

Tab. 2.4: Static templates for the honeypot data set. The templates have been
constructed using tokens as basic strings and NMF for matrix factorization.

39

2. Analysis

such as the popular Snort [Roesch, 1999] and Bro [Paxson, 1999] system, since
they enable identification of unknown and novel network threats.

For the evaluation of intrusion detection performance, we consider three larger
data sets of network payloads: The first data set (FIRST08) contains HTTP re-
quests monitored at the web server of a research institute during a period of 60
days. The second data set (BLOG09) contains requests of several web blogs run-
ning the popular platform WordPress and spans 33 days of traffic. The third data
set (FTP03) comprises the client side requests of FTP sessions recorded over ten
days at Lawrence Berkeley National Laboratory [Pang and Paxson, 2003]. Addi-
tionally to this benign data, we inject network attacks into the traffic. The attacks
are executed in a virtual environment using common tools for penetration testing,
such as Metasploit, and are carefully adapted to match characteristics of the data
sets (see Section 4.2 for details).

For the experiment, we apply a detection method similar to the work of Wang
et al. [Wang and Stolfo, 2004, Wang et al., 2005]. A centroid model of normal
network payloads is constructed using n-grams, µfull “

1
N

řN
i“1 φppiq, and used for

identifying unusual network content. Additionally, we consider a second model
in which the n-grams are refined using the reduced vector space. Formally, after
calculating the matrix factorization A “ BC, we construct this model as follows:
µreduced “ Bp 1

N

řN
i“1 ciq, where we calculate the centroid in the lower-dimensional

space obtained by the first 20 base directions of NMF. The two models are trained
on 1,000 randomly drawn payloads for each data set, and anomaly detection is
performed on 200,000 randomly chosen HTTP requests and 20,000 FTP sessions.

Results are shown as Receiver Operating Characteristics (ROC) curves in Fig-
ure 2.7a. The performance of the full and reduced centroid model is identical on
all three data sets. This demonstrates that the base directions identified by NMF
capture semantic information of the underlying protocols sufficient for detection
of anomalies and attacks. Figure 2.7b details the runtime performance attained
by the different models. Reducing the analysis using the lower-dimensional space
provides a significant performance gain over regular anomaly detection. Speed-up
factors between 8–15 can be observed and clearly indicate the utility of PRISMA
as preprocessing step for anomaly detection.

2.3 Evaluation of Stateful Communication

In this section we show, how the PRISMA method benefits from the incorporation
of dynamic information. We demonstrate that PRISMA is capable of learning and
also simulating network communication from real network traces. To this end we
use several network traces recorded via tcpdump and plug one part of the data into
our processing pipeline and check the quality of the model both according to the
remaining data and syntactical and semantical features of the simulated sessions.
By this we ensure an evaluation of PRISMA under real-life conditions:

1. Comparison against the held-out sessions assures completeness of the models,
meaning that the learned models are capable of replaying real sessions as
observed in the data pool.

40

2.3. Evaluation of Stateful Communication

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.01 0.02 0.03 0.04 0.05
x

y

Type

FIRST2008 full

FIRST2008 pruned

BLOG2009 full

BLOG2009 pruned

FTP03 full

FTP03 pruned

(a) ROC curves

0

200

400

600

8.08x14.65x
12.66x

BLOG2009 FIRST2008 FTP03
Data

M
ea

n
tim

e
pe

r
re

qu
es

t (
us

ec
)

Model

Full

Pruned

(b) Runtime performance

Fig. 2.7: ROC curves and runtime for network anomaly detection. The templates have
been constructed using 4-grams as basic strings and NMF for matrix factorization.

2. Checking syntactical and semantical features of the simulated sessions guar-
antees the correctness of the models from a communication perspective.

In Section 2.3.1 we introduce the data sets and discuss the resulting feature
spaces after dimension reduction. Then, we look at the general properties of the
learned PRISMA models in Section 2.3.2 and the completeness and correctness
of these models in Section 2.3.3. We conclude the evaluation with a case study
on malware analysis, showing that PRISMA can be useful in application domains
beyond honeypots.

2.3.1 Data Sets and Dimension Reduction

For the evaluation of the PRISMA framework we have chosen three representative
data sets, of which two are text-based and one is purely binary:

• SIP: A data set recorded in a real, medium sized telephony infrastructure
containing roughly seven days of communication of 20 participants with dif-
ferent Session Initiation Protocol (SIP) clients.

• DNS: Domain Name System (DNS) requests of a home network with seven
different clients collected during one day of heavy use.

• FTP: File Transfer Protocol (FTP) data set from the Lawrence Berkeley
National Laboratory [Pang and Paxson, 2003] containing both client and
server requests from ten days of communication.

Naturally, these data sets vary in size: while the SIP data set is a medium-sized
pool of roughly 35,000 messages, the DNS data set contains just 6,000 messages.
The FTP data comprise of nearly 1.8 million messages rendering it the biggest data

41

2. Analysis

Size Dimension % kept % unique

SIP 34,958 72,937 0.39% 2.58%
DNS 5,539 6,625 13.15% 35.64%
FTP 1,760,824 87,140 2.17% 0.24%

Tab. 2.5: Properties of data sets: size gives the total number of messages in the data
set and dimension the number of features before the dimension reduction step. % kept
and % unique gives the percentage of features and messages, which are kept after the
dimension reduction step.

set of the evaluation. To accommodate the different properties of the data sets, we
apply different embeddings: Since SIP and FTP consist of human-readable text,
both can be tokenized with the usual whitespace characters. Due to the binary
layout of the DNS data, this tokenization approach would not be feasible, therefore
we have chosen a 2-gram embedding for DNS. For all data sets we use 90% of the
data to learn the PRISMA model and keep the remaining data for the evaluation
carried out in Section 2.3.3.

The resulting feature dimensionality reductions and unique messages are shown
in Table 2.5. The first thing to note is that once again the dimension reduction
step shows excellent behavior: the relative number of kept features ranges from
0.4% for SIP, 13.2% for DNS and 2.2% for the FTP data set showing the extreme
focus, which emanates from the dimensionality reduction. A direct consequence
of this is the relative number of unique messages for each data set, ranging from
2.6% for SIP, 35.6% for DNS and 0.2% for FTP. The striking difference between
DNS and SIP/FTP in terms of reduction can clearly be explained by the different
conceptual layouts of the languages: the highly compressed, binary format of the
DNS protocol leaves less room for optimization of the feature space, therefore also
the number of unique messages after the dimension reduction is higher compared
to the other text-based protocols.

Overall, we see that the dimension reduction is highly effective even for binary
protocols. By focusing only on the varying parts of the messages and unique
messages in this reduced feature space, valuable computation time can be saved
and renders the PRISMA approach capable of modeling even big data collections.

2.3.2 Properties of Learned Models

Following the embedding and dimensionality reduction step we apply the event
clustering step as described in Section 2.1.3: Both for the SIP and DNS data
set we apply the NMF clustering algorithm, since a quick inspection of the data
shows, that the part-whole-relationship underlying the NMF algorithm holds for
these two data sets. The relative short FTP messages follow a more or less fixed
setup, rendering the position-dependent clustering approach better suited for this
kind of data.

42

2.3. Evaluation of Stateful Communication

nodes Coverage Min. DFA Coverage

SIP 148 14.5% 100 9.8%
DNS 381 0.8% 153 0.3%
FTP 1,305 0.8% 653 0.4%

Tab. 2.6: Number of nodes for the PRISMA models both for the unoptimized Markov
model and the minimal DFA. Coverage relates these numbers to the potential number
of nodes possible.

Copy Seq. Add Part Data Total

SIP 1,916 77 135 52 1,793 3,972
DNS 3,142 4 0 0 3,527 6,673
FTP 532 18 253 35 4,671 5,509

Tab. 2.7: Number of different rules of the PRISMA models extracted for the different
data sets.

Table 2.6 summarizes the number of nodes of the extracted Markov model for
each data set and relates this number to the potential number of nodes which are
attainable as described in Section 2.1.4. We see that the total number of nodes for
the SIP data set is smallest, yet the relative coverage is highest. For DNS and FTP
the absolute number of nodes is higher, but the relative coverage of the potential
node space is very sparse, indicating that there is an inherent dependency of relative
coverage and estimated number of clusters. Application of the DFA minimization
algorithm to the Markov model significantly reduces the number of nodes for the
models converting the resulting networks into dimensions manageable by humans.

The corresponding number of rules for each model is shown in Table 2.7. Note
that for the n-gram embedding the Add and Part rules are deactivated, since they
are already handled by the Copy rule. We see, that all rules are represented. The
SIP data set exhibits a higher number of more involved rules compared to all other
data sets reflecting the highly redundant structure of this protocol. Both DNS and
FTP have an inherent variable part (the server name for DNS and the file names
for FTP) which results in a higher number of Data rules compared to the SIP data.

Figure 2.8 gives a visual impression of the learned model for the FTP data set.
To generate this session we simulated both sides of the communication with our
PRISMA model learned on the FTP data set: one model was executed to act as the
client and the other one acted as the server. We see in the resulting log, that the
session that was generated is valid FTP: Starting with the initial login procedure,
the client sets the TYPE of the communication to binary data, then enters passive
mode and gets a file from the server. Note, that the name of the file from the client
request is copied over to the corresponding reply of the server, showing the power
of the inferred rules. Obviously, the byte size of 56 is not the proper size of the

43

2. Analysis

1 220 <domain> FTP server (Version wu-2.6.2(1) Mon Dec 30 16:58:35 PST 2001) ready.

2 USER anonymous

3 331 Guest login ok, send your complete e-mail address as password.

4 PASS <password>

5 230 Guest login ok, access restrictions apply.

6 TYPE I

7 200 Type set to I.

8 PASV

9 227 Entering Passive Mode (131,243,1,10,9,240).

10 RETR groff-perl-1.18.1-4.i386.rpm

11 150 Opening BINARY mode data connection for groff-perl-1.18.1-4.i386.rpm (56 bytes).

Fig. 2.8: Sample FTP session generated by executing two PRISMA models against
each other (one as client, one as server). Data fields are marked by boxes, exact copy
rules are filled in gray.

requested file, since it was chosen randomly from the Data rule, but the message
itself is a valid FTP reply showing the ability of PRISMA to even generate new
messages not seen in the training pool before.

2.3.3 Completeness and Correctness

While the previous figures and examples show that the PRISMA method produces
relatively condensed models of both the embedding space and the state machine,
questions regarding the completeness and correctness of these models are treated
in this section.

Completeness

To judge the completeness of the models we take the 10% of the held-out data
and simulate either the client or the server side to evaluate whether our learned
model contains a path, which could generate a session which resembles the data
most. Since the transitions in the model are probabilistic, we cannot ensure that
the path we choose during the simulation is synchronized with the actual content
of the session. For instance, a session might contain a specific branch of the state
machine, which occurs just 5% of the time like a server overload error reply or the
like. To alleviate this probabilistic effect we repeat each simulation 100 times and
introduce a determinism by feeding the first two messages of a session to the model
such that the states for the first two messages which are exchanged are aligned.

The results of these simulations are reported in Figure 2.9. We use the nor-
malized Damerau-Levenshtein distance as similarity (1 meaning equality) which
counts the number of insertions, deletions, or substitutions necessary to transform
one string into another. At each position of a session we take the maximum at-
tained similarity over all repetitions to take account of the probabilistic effect as
described before.

44

2.3. Evaluation of Stateful Communication

SIP DNS FTP

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Position

F
re

qu
en

cy

Similarity

1.0

[0.9, 1.0)

[0.75, 0.9)

[0, 0.75)

Fig. 2.9: Distribution of maximal similarities by message position in a session replay.
Recorded is the normalized edit distance giving a 1.0 for equal messages. The size
of the black bar corresponds to the frequency of equal messages, the size of the dark
gray bar for similarities ranging between 0.9 and 1.0, the light gray bars for similarities
ranging between 0.75 and 0.9.

For the SIP data set we observe that the number of equal messages ranges
between 80% and 60%. The similarity score is almost never below 0.9 showing
that the learned models can correctly re-model the hold-out session. For DNS
this behavior is similar but shows more variance due to the relative low number of
sessions having more than six messages. The FTP data set shows an even better
performance of the PRISMA model with nearly all messages showing equality up
to position six. The frequency of exact resemblance then stays always above 70%
showing that even complex protocols can be accurately simulated for more than
four steps.

Correctness

Next, we focus on the syntactical and semantical correctness of the generated
messages. For the syntactical correctness we utilize the protocol filters of the
network protocol analyzer Wireshark. Only for the FTP protocol we have to
check the validity of the commands manually according to the RFCs [Postel and
Reynolds, 1985, Hethmon, 2007, Mankins et al., 1980, Hethmon and Elz, 1998].
For the check of semantical correctness we apply the following rules:

• SIP: For each message of a session we check whether the CallID, from- and
to-tag are preserved, since this triple of values identifies a SIP-session.

• DNS: If the message of a session is a reply, we check whether it was queried
before in this session and has the same query ID.

• FTP: For each FTP request we check, whether both the request and the
returned reply code is a valid one according to the RFCs.

45

2. Analysis

Syntax Semantic

Unidir. Bidir. Unidir. Bidir.

SIP 1.000 1.000 0.988 0.945
DNS 1.000 1.000 1.000 0.994
FTP 0.999 0.821 0.934 0.576

Tab. 2.8: Frequency of sessions having 100% syntactical and semantical correct mes-
sages for the different simulation paradigms (uni- and bidirectional).

Syntax Semantic

Msgs. correct Unidir. Bidir. Unidir. Bidir.

100% 0.999 0.821 0.934 0.576
ą 90% 1.000 0.953 0.988 0.878
ą 80% 1.000 0.996 1.000 0.982

Tab. 2.9: Breakdown of cumulative syntactical and semantical correctness of sessions
for the FTP data.

For each session we count the number of syntactically and semantically correct
messages and report the relative frequency of correct messages for the complete
session. In addition to the sessions generated for the completeness evaluation
(denoted as unidirectional) we also simulate 100,000 sessions, in which both sides
are generated by our model (denoted as bidirectional).

The results are shown in Table 2.8: The syntactical correctness of the sessions
is almost always perfect. Only the bidirectional simulations for the FTP data set
shows a relative decline of having just 82% percent of the sessions which are totally
correct. Regarding the semantics, DNS shows also a nearly perfect behavior. The
performance of the SIP model is with 98% and 94% of the sessions totally correct
for the uni- and bidirectional simulation, respectively, also in a very good range.
While the semantics for the FTP in the unidirectional case show good behavior,
the performance declines for the bidirectional simulations: just 57% of the sessions
are totally correct. Since FTP sessions tend to be very long, we investigate the
correctness in more detail in Table 2.9. By splitting the frequency bins we observe
that the bulk of the sessions have more than 80% correct messages. In combination
with the higher length of a FTP session this shows that even for difficult, potentially
vast communication patterns the PRISMA model is able to capture both the syntax
and the semantics of the communication.

In summary, the evaluation shows that the inferred PRISMA models are very
compact and show a very high degree of completeness as well as syntactical and
semantical correctness. This renders these models ready for the deployment in
real-life network infrastructures to act as a honeypot specifically designed for the

46

2.3. Evaluation of Stateful Communication

START

AcEc

Ds

Cc

Bs

Ic

Gc

Fs

Kc

ENDJs

Hs

HTTP/1.1 404 Not Found
Date: |_| |_| Jan 2011 |_| GMT
Server: Apache/2.0.63 (Unix) ...
Content-Length: |_|
Connection: close
Content-Type: text/html;
charset=iso-8859-1

GET /.sys/?getexe=go.exe HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 ...
Host: www.xx.com
Connection: Keep-Alive

POST /.sys/?action=ldgen&v=15 HTTP/1.1
Host: |_|
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0;
na;)
Content-type: application/x-www-form-urlencoded
Connection: close
Content-Length: 0

HTTP/1.1 200 OK
Date: |_| |_| Jan 2011 |_| GMT
Server: Apache/2.2.9 (Debian) DAV/2 mod_ssl/2.2.9 ...
Content-Type: text/html
#BLACKLABEL
#GEO=FR
...
STARTONCE|http://www.xx.com/.sys/?getexe=go.exe
STARTONCE|http://www.xx.com/.sys/?getexe=fb.76.exe
...
START|http://www.xx.com/.sys/?getexe=v2captcha.exe
START|http://www.xx.com/.sys/?getexe=v2googlecheck.exe
#CACHE
MD5|ffd6c11a8dde1687943d4a53021ae9ca
#SAVED 2009-12-11 04:00:28

GET |_| HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 ...
Host: www.xx.com
Connection: Keep-Alive

Scan
Handshake
Download

Fig. 2.10: Extracted state model for Koobface traffic: The upper part of the model
corresponds to a scanning phase of the malware. The middle part is a handshaking
procedure with an infected machine, where the malware gets a new list of malware
which is finally downloaded in the lower part of the state machine.

occurring traffic in this network. Contacts to this honeypots can be held up for a
high number of steps to gather in-depth information of the behavior and intentions
of the potential intruder. This information cannot only be used to estimate the
threat potential in an infrastructure at a given time point but also to learn more
about the attacks or mischief being conducted.

2.3.4 Case Study: Koobface

In this section we apply PRISMA to network traffic collected from malicious soft-
ware by Jacob et al. [2011]. We pick one specific class of malware instances and use
the token embedding and part-based clustering. We have a total of 147 sessions
with 6,674 messages. A detail of the resulting model is depicted in Figure 2.10.

In the upper part we see a scanning loop, in which the malware tries to find
an infected server: as long as the server does not answer in a specific format, the
scan is continued. After the malware has received a correct reply in state FS a
handshaking procedure between malware and server takes place, which is followed
by a download cycle. In state IC , the malware starts to download the first file from
the list (go.exe), while in the following states all the other files are downloaded.
This can be nicely seen by the Data rule associated to the template of state KC ,
which contains several instances of the following paths:

/.sys/?getexe=tg.14.exe, /.sys/?getexe=ms.26.exe,

/.sys/?getexe=hi.15.exe, /.sys/?getexe=be.18.exe,

/.sys/?getexe=tw.07.exe, /.sys/?getexe=v2captcha.exe,

/.sys/?getexe=v2googlecheck.exe

47

2. Analysis

By inspecting the extracted state-machine and the associated templates and rules,
a malware analyst can gain insights into the inner workings of a malware instance
from the collected network traces alone. This renders PRISMA a valuable tool
beyond the realms of honeypot applications, for instance in the construction of
multi-step attack signatures [Meier, 2007].

2.4 Discussion and Related Work

In this section we first discuss some valuable extensions for the practical deployment
of PRISMA models. While the basic algorithm described in Section 2.1 produce
accurate models which reflect the properties of the underlying data pool, the ad-
ministrator might want to tune these models for a better honeypot performance
or to comply to privacy issues. These extensions are discussed in Section 2.4.1.
A thorough discussion of related work to the PRISMA framework is given in Sec-
tion 2.4.2.

2.4.1 Practical Extensions

Deployment of PRISMA models as honeypots adds more practical constraints
which are hard to model in an algorithmic fashion. For instance, the model should
not contain any information which violates the privacy of any user of the system,
since a clever intruder could try to infer this kind of data via the communication
with the honeypot. If the data used to learn the model even contains passwords or
other security related information the privacy issue even becomes a security risk.
Therefore, we have devised some extensions to the PRISMA method which allow
an administrator to explore the learned model and adjust it where needed. This
part of the analysis framework bridges the gap between the statistical model and
the real world: the probabilistic view of the data has to be transformed back into
an easily comprehendable and also functioning view for the outside world.

Language Models for Fields

During the rule generation process described in Section 2.1.5 we introduced the
Data rule as a fallback solution in case we could not find any other rule type as-
sociated with this specific field. This rule would trigger the selection of a random
value which we have seen during the training phase to fill this specific field. While
this is certainly a valid and also sound approach, it is afflicted with some poten-
tial privacy problems: If the corresponding field contains privacy or even security
related content like usernames or passwords, one would definitely not want to leak
this kind of information. Therefore, a more intelligent and pragmatic solution is
needed for some fields to preserve privacy or security issues.

One possible solution to this problem is to infer a per-field language model for
instance by tokenizing the observed content contained in the Data rule by n-grams
and model each observed string as a sequence of these n-grams. For a generative
model we can then once again leverage the power of Markov chains to model the
observed data pool in a probabilistic way. If we now have to fill the field with

48

2.4. Discussion and Related Work

Fig. 2.11: Prototype of a model explorer which allows to “play” with the model and
observe its behavior according to the underlying Markov model.

contents, we just have to generate a string according to the learned Markov model.
This string will resemble the observed data without directly returning actually
observed values. So if the data pool is sufficiently diverse, this kind of model will
preserve privacy and security.

Subrules

Another issue with the deployment of a PRISMA honeypot in the real world is to
craft a not only correct and complete model of the service, but also an interesting
one for potential intruders. It might be that the traffic used for learning the
model contains some flaws, which do not allow normally valid input to pass the
model. For instance, if we have learned a model with horizon 2 and just observed
message sequences of the kind A-B-E-. . . and C-D-E-. . . , then the model could not
handle the message input A-D-E-. . . or C-B-E-. . . since it has not observed such a
behavior. If the domain expert knows that such sequences of messages are also
valid, an obvious solution to this problem would be just to add the missing edges
to the Markov model.

Unfortunately, while the Markov model would now be capable of handling such
unseen situations, there would not be any rules in the model which could handle
such a case. A not so obvious, yet extremely powerful resort is the concept of
subrules: Instead of just learning all rules with horizon k, we could also learn rules
for horizon k´ 1, k´ 2, . . . , 0 and add them to our model. The LENS module (see
Algorithm 1) would automatically pick the rule with the highest possible horizon
to carry on the simulation. For instance, in the case above we would have learned
the rules for the transition D-E and B-E allowing us to go on with the simulation.
Note, that transitions with a horizon of k “ 0 would consist solely of Data rules.
This allows the generation of messages even for totally unobserved transitions.

Model Explorer

To extract information like the content of a specific field or how the model reacts
to certain inputs, the administrator needs a powerful model explorer. This tool
would simulate the communication while showing the underlying model graph.

49

2. Analysis

Each node in this graph could be selected, and associated templates and rules
could be inspected and even edited.

Being extremely useful for real-life deployment, programming such a tool with a
sophisticated and useable GUI would be a very time-consuming task. Therefore we
decided to develop a proof-of-concept model explorer terminal shown in Figure 2.11:
The user can play with the model via a command line interface and observe the
control flow in a pre-rendered graph of the Markov model. Albeit being a very
simple solution, this approach already showed good usability possibilities. Thus,
a full fledged model explorer with GUI would definitely be a valuable addition to
the PRISMA framework.

Intelligent Template Matching

Simulating network traffic via the LENS module involves finding the right template
(see line 5 of Algorithm 1) for a given input. While this can be solved by just
tokenizing the given input according to the learned model and find a one-to-one
correspondence based on this sequence of tokens in the possible template pool, this
approach might be too strict for real-world deployment. Hence, a more intelligent
template matching algorithm would be a valuable extension for the LENS module.

One way to approach this problem is by exploiting the edit distance to a given
tokenized message to all possible templates: If we do not find a one-to-one match,
we can order the possible templates according to their edit-distance to the input
and pick the template with the minimal one. Exploiting the information found
in the distance matrix of the Damerau-Levenshtein distance for these two strings,
matching and omitted tokens could be found resulting in an optimal alignment of
the input to the template.

2.4.2 Other Approaches

Inference of both message formats and underlying protocol state machines is not
only a relevant problem in today’s fast changing networked world but has also been
tackled from different directions. From the pure reverse engineering perspective,
the open source community has tried to fully understand the inner workings of
proprietary protocols in order to develop open implementations of several network
services (e.g. SMB, ICQ, Skype). Most of this work has been done in a manual
fashion, but the special relevance of network protocol analysis for the security field
has led to many research efforts on automatic learning of the protocol state machine
and the format of messages involved in a valid communication session.

The work of Beddoe [2005] constitutes a first attempt to extract the fields
from protocol messages by drawing upon advanced computational techniques. This
approach proposes the clustering of complete messages and the construction of
a phylogenetic tree in order to guide the process of global sequence alignment
through the Needleman-Wunsch algorithm. With RolePlayer [Cui et al., 2006],
the authors build on these ideas to tackle the problem of automatically replaying
valid messages from a protocol. Although they present a limited approach that
requires the other side of the communication to follow the script that has been

50

2.5. Outlook and Conclusion

used to configure the system, it already considers the problem of simulating a state
dependent communication. Within the same scope is Replayer [Newsome et al.,
2006]. The system presented proposes an enhanced solution beyond heuristics,
introducing the concepts of theorem proving and weakest pre-condition verification
as means to handle protocol dependencies.

A similar approach with a specific security application and also focused on re-
playing valid messages is introduced in the realm of honeypots by ScriptGen [Leita
and Mermoud, 2005, Leita and Dacier, 2006]. This low interaction honeypot learns
and simulates communication patterns of vulnerabilities. The objective of Script-
Gen is not to infer an accurate specification of the protocol but to obtain the
maximum information on the exploitation attempt of a service. Although closely
related to our approach, ScriptGen is designed for monitoring low-level attacks
against implementations, whereas PRISMA enables collecting and tracking seman-
tic attacks on top of these implementations. In a similar strain of research, Cui
and Kannan [2007] have studied the use of tokenization and clustering of individ-
ual messages to find fields in message structure. However, this work does not infer
the state machine of a protocol and thus can not be used for simulating network
communication.

Different approaches based on dynamic taint analysis have been proposed to
infer protocol specifications [Caballero et al., 2007, Lin et al., 2008, Wondracek and
Comparetti, 2008, Cui et al., 2008]. In order to overcome the lack of semantics of
clustering techniques, they rely on dynamic binary analysis of the network service
that handles the protocol messages. This eases finding keywords and delimiters
but unfortunately all these works defer the task of learning the protocol state
machine. An extension to this work with a practical focus on security is carried
out by Caballero et al. [2009]. They devise Dispatcher, a system that is capable of
infiltrating botnets (whose operation may be based on customized or proprietary
protocols), by being able to model, as in our work, messages from both sides of the
communication. Also at the host level, it is worth mentioning the work of Wang
et al. [2009], which uses binary analysis to extract the properties of messages at
memory buffers once they have already been decrypted.

Finally, Comparetti and Wondracek [2009] build on these ideas in order to con-
struct the state machine of a protocol from the dynamic behavior of the application
that implements such protocol. The extent of their work certainly resembles ours,
nonetheless, our approach is free of the additional burden of binary taint analysis
since it is fully network based. The gathering of large amounts of input traces for
our system is thereby a straightforward task.

2.5 Outlook and Conclusion

The PRISMA framework proved to be a valuable tool for analyzing network traffic.
For stateless communication PRISMA allows the extraction of semantically mean-
ingful components which can be used to describe the essential components of large
data collections. The testing-based feature extraction and subsequent embedding
in a vector space enables us to apply various tools from machine learning to infer

51

2. Analysis

common structure found in the data pool. Incorporation of state information leads
to a tool capable of learning and simulating communication of a given service from
network traffic alone. By representing the internal state machine of the service
with a Markov model and extracting templates and rules via aligning the collected
session to this state machine, PRISMA is able to extract information necessary for
an efficient simulation of the data pool. The evaluation shows that both from the
viewpoint of completeness and syntactical and semantical correctness PRISMA is
capable to emulate real-life network traffic. Application to traces from malware
extracts a clear behavioral model of the malware simplifying the daily work of a
malware analyst. Apart from the application as an analytical tool PRISMA mod-
els can act as a full-fledged abstract state machine and message generator for new,
emerging services. This enables a service provider to add a honeypot component to
a new service by just learning a PRISMA model from network traffic alone instead
of manually programming such a honeypot.

Thus, our next goal is to deploy PRISMA as a honeypot in a dedicated network
infrastructure. While our evaluation shows that the PRISMA models are solid we
expect valuable input of this real-life application to check our practical extensions
and further robustify our approach. Additionally, stateful fuzzing is an interesting
other application of PRISMA; for instance, one can use the extracted Markov model
to find communication paths inside the state machine, which occur very seldom
and therefore should tend to be rather untested and error-prone. We believe that
the template structure and the rule can give valuable clues which fields should be
fuzzed with what content to maximize the probability of an enforced error. The
analysis of Koobface network traces with PRISMA shows that the method can
readily be applied in the domain of malware analysis. Still, further refinements,
for instance finding the most interesting path in the state machine of the malware,
can enhance the usability of PRISMA for this scenario.

In terms of theoretical findings we could show that the course of dimensionality
does not interfere with our modeling approach. Obviously, after the preprocess-
ing and feature selection we are able to exploit the fact that the data resides in
a much smaller subspace of the high dimensional feature space. Hence, by elimi-
nating unnecessary or redundant features we can expose this subspace even more
by using matrix factorization methods like the replicate-aware non-negative ma-
trix factorization. This condensation of the data to its bare, distributional-like
minimum allows us in a subsequent step to extract a probabilistic version of the
abstract state machine. This layered approach (preprocessing followed by feature
reduction followed by probabilistic modeling) is also reflected in the software de-
sign of PRISMA where each layer is implemented as a tool chain consisting of
small, specialized modules. We have released parts of the PRISMA toolbox as an
open source CRAN package (see R Core Team [2012]) named PRISMA which con-
tains replicate-aware versions of the NMF and PCA together with import routines
and the testing-based feature selection methods for the efficient loading of huge
data pools. Hopefully, other users can benefit from the techniques of PRISMA by
helping to analyze their data and better protecting their infrastructures.

52

Chapter 3

Detection

Detecting unwanted behavior in a network infrastructure often involves a rule-
based system, which monitors some sensor data and observes aberrations from
pre-specified rules. These rules are often hand-crafted from security specialists
who analyze their domain and build some meaningful models. For instance we
have seen in Table 2.4, that a specific malicious request of a malware has the
contents modez ^ botz ^ bot.txt. Therefore, the domain expert could build an
according regular expression for an intrusion prevention system which constantly
monitors network traffic and searches for matches to such regular expression rules
in the payloads. Obviously, this solution involves a lot of manpower. While the
methods introduced in the previous chapter equip us with powerful tools to support
such efforts, it would be even better to learn these rules automatically from a given
data pool. We have seen in Chapter 2 that the structural features we extracted
from the data joint with a similarity metric opens up the whole toolbox of machine
learning by transferring the data in a suitable vector space. This allows us to pose
the rule learning problem as a regression or classification task.

As a concrete example we give a brief introduction to the Cujo system [Rieck
et al., 2010, Krueger and Rieck, 2012]. Cujo acts as a man in the middle between
the browser and the web: Whenever a client downloads a page with JavaScript
content, the Cujo system inspects the script before delivering it to the client. By
looking at both syntactical features encoding the script’s structure and dynamical
features describing the actual behavior of the script, Cujo decides whether the
script is benign and can be delivered to the client or is malicious and should be
dropped. The rules to perform these tests are learned automatically with a support
vector machine (SVM) which takes both malicious and benign scripts as input. By
extracting both syntactical and behavioral features with techniques similar to those
of Chapter 2 and therefore embedding the data into a vector space, the SVM infers
a separating hyperplane with maximal margin [see for instance Müller et al., 2001].
By solving this classification problem we can apply the learned SVM model to new
data and decide whether it is a benign or malicious script.

Learning a suitable model for a problem involves the tuning of specific meta
parameters to find the right fit for the data at hand. In the case of Cujo we have to
specify which token embedding should be used: choosing a high-dimensional token

53

3. Detection

embedding leads to a very fine-grained model which might be too complicated to
explain the underlying data generation problem and therefore tends to overfit the
data by just memoizing the complete learning pool. On the contrary, choosing a
too low-dimensional token embedding might lead to a too simplistic model which
underfits the data and does also not capture the underlying data generation process.
Thus, finding the right embedding is a crucial task referred to as model selection.

In the following we explain the problem of finding the right model in a more
formal way for a regression task: In a regression problem we want to learn the
prediction equation y “ fpxq from a data set consisting of data points d1 “

pX1, Y1q, . . . , dN “ pXN , YN q P X ˆY which we assume to be drawn independently
and identically distributed from an unknown distribution PX,Y . One approach to
solve this problem is to minimize the mean squared error (MSE) over a given data
set. Basically, without prior knowledge of the underlying data generation process
and PX,Y , there are infinitely many solutions leading to a minimization of the MSE
on the training data. One trivial method would be to just memoize all values from
the training data set, which obviously would lead to poor performance on unseen
data, i.e., the model would not be able to generalize.

Therefore, one has to impose structural restrictions to the function class and
introduce regularizations to the function, which can directly be controlled by so-
called meta parameters. For instance, in ridge regression we impose a linear func-
tion class in combination with a restriction on the resulting coefficient values. As
shown by [Hastie et al., 2009, Chapter 7], if we assume that Y “ fpXq ` ε with
Erεs “ 0 and V arrεs “ σ2

ε , the expected prediction error Err of a regression fit
gpXq at an input point x using squared-error loss is:

ErrpX “ xq “ ErpY ´ gpxqq2|X “ xs

“ σ2
ε ` pErgpxqs ´ fpxqq

2
loooooooooomoooooooooon

Bias2rgpxqs

`Ergpxq ´ Ergpxqss2
looooooooooomooooooooooon

V arrgpxqs

So the total error can be split up into an irreducible part (variance of the data),
the squared bias of the estimate (how far are we from the real solution), and the
variance of the estimate (how wiggly is our estimate). The meta parameters of a
learning method control the model complexity. The higher the chosen complexity,
the less the bias but the higher the variance of the estimate, and vice versa. Thus,
if we choose the model complexity too high, we can perfectly imitate the training
data (bias tends to zero), but we will suffer from a higher variance on unseen data:
the model will overfit. On the contrary, if we choose the complexity too low, our
estimate will exhibit a high bias with low variance leading to an underfitted model.
Since we are interested in the lowest prediction error, the model selection process
has to focus on the optimal point of this bias-variance trade-off at which a further
decrease in bias would be dominated by the increase in variance.

Figure 3.1 shows, how the training and test error evolves for ν support vector
regression (ν-SVR) models with Gaussian kernels repeatedly trained on 50 train-
ing points with varying width of the Gaussian kernel (σ) and fixed regularization
parameter (ν): We can observe, that the training error for more complex models
(i.e. lower σ) highly underestimates the test error on an independent test set. Fur-

54

0.2

0.4

0.6

0.8

1.0

1.2

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0
log(σ)

M
S

E

Error

●

●

Test

Train

Fig. 3.1: Mean squared error (MSE) of ν support vector regression models with
Gaussian kernel repeatedly trained on 50 training points with varying σ. The blue
line denotes the MSE on the training set, while the red line denotes the MSE on an
independent test set. For high model complexity (i.e. low σ) the training error diverges
even more from the real test error due to an overfitting effect.

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

−15 −10 −5 0 5 10 15
X

V
al

ue

(a) logpσq “ ´2.25

0.0

0.5

1.0

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

−15 −10 −5 0 5 10 15
X

V
al

ue

(b) logpσq “ ´1.25

−0.5

0.0

0.5

1.0

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

−15 −10 −5 0 5 10 15
X

V
al

ue

(c) logpσq “ ´0.25

Fig. 3.2: Prediction (blue line) and real values (red line) of ν support vector regression
models with Gaussian kernel trained on 50 training points (black dots) of the noisy sinc
data set. We see that models with high model complexity (i.e. low σ, left plot) exhibit
overfitting while models with very low model complexity (i.e. high σ, right plot) clearly
underfit the data.

thermore we can see, that the ν-SVR has an optimal performance roughly around
logpσq “ ´1.25. A visual impression of the different complexity classes is shown
in Figure 3.2: while the high complexity model in Figure 3.2a overfits the training
data and the low complexity model in Figure 3.2c underfits the real function the
optimal model in Figure 3.2b accurately describes the real function class.

Since we cannot rely on the training error of a model to determine the op-
timal model complexity, we have to find a tool to estimate the test error for
the adjustment of the model complexity via the meta parameters of the learn-
ing method. Cross-validation is the de-facto standard in applied machine learning
to tune meta parameters of machine learning methods in supervised learning set-
tings (see Mosteller and Tukey 1968, Stone 1974, Geisser 1975 and also Arlot et al.

55

3. Detection

2010 for a recent and extensive review of the method). Part of the data is held back
and used as a test set to get a more unbiased estimate of the true generalization
error. Cross-validation is computationally quite demanding though. Doing a full
grid search on all possible combinations of parameter candidates quickly takes a lot
of time, even if one exploits the obvious potential for parallelization. Furthermore,
the size of today’s data sets often forbids to calculate the performances for all
parameters on the complete data. For instance, in network computer security we
can often collect huge amounts of data by just tapping the wire at a specific point
in the infrastructure and record the traffic. Model selection then also amounts to
finding a small enough subset which is sufficient to capture the complexity of the
data generation process.

Therefore, cross-validation is seldom executed in full in practice, and different
heuristics are usually employed to speed up the computation. For example, instead
of using the full grid, local search heuristics may be used to find local minima in
the test error (see for instance Kohavi and John 1995, Bengio 2000, Keerthi et al.
2006). However, in general, as with all local search methods, no guarantees can
be given as to the quality of the found local minima. Another frequently used
heuristic is to perform the cross-validation on a subset of the data, and then train
on the full data set to get the most accurate predictions. The problem here is to
find the right size of the subset. Apparently, if the subset is too small and cannot
reflect the true complexity of the learning problem, the parameters selected by
cross-validation will lead to underfitted models. On the other hand, a too large
subset will take longer for the cross-validation to finish.

Applying those kinds of heuristics requires both an experienced practitioner
and a high familiarity with the data set. However, the effects at play in the
subset approach are more manageable: as we will discuss in more depth below,
given increasing subsets of the data, the minimizer of the test error will converge,
often much earlier than the test error itself. Thus, using subsets in a systematic
way opens up a promising way to speed up the model selection process, since
training models on smaller subsets of the data is much more time-efficient. During
this process care has to be taken when an increase in available data suddenly
reveals more structure in the data, leading to a change of the optimal parameter
configuration. Still, as we will discuss in more depth, there are ways to guard
against such change points, making the heuristic of taking subsets a more promising
candidate for an automated procedure.

In this chapter we will propose a method which speeds up cross-validation by
considering subsets of increasing size. By removing clearly underperforming pa-
rameter configurations on the way this leads to a substantial saving in total com-
putation time as sketched in Figure 3.3. In order to account for possible change
points, sequential testing [Wald, 1947] is adapted to control a safety zone, roughly
speaking, a certain number of allowed failures for a parameter configuration. At
the same time this framework gives statistical guarantees for dropping clearly un-
derperforming configurations. Finally, we add a stopping criterion to watch for
early convergence of the process to further speed up the computation. Thus, the
contributions of this chapter are as follows:

56

5-fold CV CVST

0.1
0.2
0.30.4

0.1
0.2
0.30.4

0.1
0.2
0.30.4

0.1
0.2
0.30.4

0.1
0.2
0.30.4

●●
●

●

●●●

●●
●

●

●●●

●●
●

●

●●●

●●
●

●

●●●

●●
●

●

●●●

fold 1
fold 2

fold 3
fold 4

fold 5

−4 −3 −2 −1 0 1 2
log(σ)

C
la

ss
. E

rr
or

0.1

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●●●

−4 −3 −2 −1 0 1 2
log(σ)

C
la

ss
. E

rr
or

Size

●

●

●

●

●

●

●

●

●

●

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

Cumulative Model Training Time

C
on

fig
ur

at
io

n

0

100

200

300

400

500

600

Cumulative Model Training Time

C
on

fig
ur

at
io

n

Size

100

200

300

400

500

600

700

800

900

1000

Fig. 3.3: Performance of a 5-fold cross-validation (CV, left) and fast cross-validation
via sequential testing (CVST, right): While the CV has to calculate the model for
each configuration (here: σ of a Gaussian kernel) on the full data set, the CVST
algorithm uses increasing subsets of the data and drops significantly underperforming
configurations in each step (upper panels), resulting in a drastic decrease of total
calculation time (sum of colored area in lower panels).

1. We describe the overall model performance by the expected risk of a learner
on increasing subsets of the data exploiting the probabilistic convergence of
this risk on subsets.

2. By transforming these performances in each step via robust and pooled test-
ing procedures into a binary trace matrix we can apply sequential testing
procedures which drop statistically significant loser configurations on the way.

3. Theoretical considerations prove the existence of a user controllable safety
zone and a resulting error bound of the whole process.

In the following, we will first discuss the effects of taking subsets on learners
and cross-validation (Section 3.1), present our method Fast Cross-Validation via
Sequential Testing (CVST, Section 3.2), discuss the theoretical properties of the
method (Section 3.3) and finally evaluate our method on synthetic and real-world
data sets in Section 3.4. Section 3.5 gives an overview of related approaches and
Section 3.6 concludes the chapter.

57

3. Detection

3.1 Cross-Validation on Subsets

Our approach is based on taking subsets of the data to speed up cross-validation.
The main question is therefore whether we can reliably estimate the best parameter
configuration already from subsets of the data. Under mild conditions we will
prove general convergence of the estimate, but also discuss why we can expect the
estimate to be much better in practice than the theoretical results developed below.

For the sake of simplicity, we will consider the following slightly simplified
formalization of the cross-validation procedure which replaces the empirical test
error by the expected risk on a test set, thereby also removing the repetitions
involved in a typical run of k-fold cross-validation. That way, we do not have to
deal with the additional inaccuracies involved by estimating the test error from a
finite set of data.1

Assume that our N training data points di are given by input/output pairs
di “ pXi, Yiq P X ˆ Y drawn i.i.d. from some probability distribution PX,Y on
X ˆ Y. As usual, we also assume that we have some loss function ` : Y ˆ Y Ñ R
given such that the overall error or expected risk of a predictor g : X Ñ Y is given
by Rpgq “ Er`pgpXq, Y qs where pX,Y q „ PX,Y .

For some set of possible parameter configurations C, let gnpcq be the predictor
learned for parameter c P C from the first n training examples. Cross-validation
basically tries to identify the best parameter c for a given training set size n which
minimizes the expected risk. Normally, this is done by computing the best pa-
rameter configuration in terms of the empirical risk on a hold-out test set, but for
the present discussion, we assume that this estimate is sufficiently accurate for the
expected risk.

If we now also consider different training set sizes, we are effectively dealing
with the task of minimizing a sequence of functions e : NÑ C Ñ R defined by

enpcq “ Rpgnpcqq. (3.1)

We are thus interested in how the minimum at some subset size m of em relates
to that of en. This question is linked to the asymptotic behavior of en itself, because
if the minimum of en converges, so will em to en eventually.

Now in general, we cannot expect en to converge at all. For example, it might
be that the model parameter is encoded in a way which needs to be scaled with the
sample size, i.e., it might be that a value c at sample size n corresponds to fpnqc for
some function fpnq, or more complex settings. Under such conditions, a parameter
configuration c might work well at a subset size m but become a suboptimal choice
for larger sample sizes.

1To make this argument more precise: Actually, we would have to compare the error enpcq
(defined in Equation 3.1, below) against another empirical error e1mpcq defined on an independent
sample. Instead, we compare enpcq against epcq, the expected error of parameter configuration c.
Technically, this would mean that we have to consider |enpcq´e

1
mpcq| ď |enpcq´epcq|`|e

1
mpcq´epcq|,

and we get essentially the same results with an additional limit process of m Ñ 8, that is,
considering the limit as the test set size also tends to infinity. For the sake of simplicity, we have
dropped this detail.

58

3.1. Cross-Validation on Subsets

We will therefore assume that for each fixed c, limnÑ8 enpcq exists. Then,
using standard techniques, it is straightforward to prove the following result (see
Appendix B.3 for the proof).

Theorem 1 Let C be a finite set and assume that for each fixed c, enpcq Ñ epcq
in probability. Then, the following holds:

1. (Uniform convergence over C) As nÑ8,

max
cPC

|enpcq ´ epcq| Ñ 0

in probability.

2. (Convergence of the minimum) Let c˚n be such that enpc
˚
nq “ mincPC enpcq,

and c˚ such that epc˚q “ mincPC epcq. Then,

epc˚nq ´ epc
˚q ď 2 max

cPC
|enpcq ´ epcq|

Moreover,
epc˚nq ´ epc

˚q Ñ 0 in probability.

3. (Evaluating on subsets of the data) For each ε, δ ą 0, there exists a
number l such that for all n ě l and m with l ď m ď n,

P tenpc
˚
mq ´ enpc

˚
nq ą εu ď δ.

For the sake of simplicity, we have assumed that C is finite. These results
can likely be extended to continuous parameter spaces with significant technical
overhead.

Theorem 1 proves that, asymptotically, we can expect to get good estimates for
the right choice of parameter configurations at training size n on a subset of size
m. This result assumes that parameter configurations are encoded in a way which
is independent of the size of the training set and hinges on uniform convergence
over all possible parameter choices.

Now how well does this result describe the practical findings? Figure 3.4a shows
the test errors for a typical example. We train a support vector regression model
(SVR) on subsets of the full training set consisting of 500 data points. The data
set is the noisy sinc data set introduced in Section 3.4.1. Model parameters are
the kernel width σ of the Gaussian kernel used, and the regularization parameter,
where the values shown are already optimized over the regularization parameter
for the sake of simplicity.

We see that the minimum converges rather quickly, first to the plateau of
logpσq P r´1.5,´0.3s approximately, and then towards the lower one at r´2.5,´1.7s,
which is also the optimal one at training set size n “ 500. We see that uniform
convergence is not the main driving force. In fact, the errors for small kernel widths
are still very far apart even when the minimum is already converged.

In the following, it is helpful to continue the discussion within the empirical
risk minimization framework. We assume that the learner is trained by picking

59

3. Detection

0.00

0.05

0.10

−4 −3 −2 −1 0 1 2
log(σ)

Size

10

25

50

75

100

150

200

250

300

350

400

450

500

(a)

0.00

0.05

0.10

−4 −3 −2 −1 0 1 2
log(σ)c =

Size

10

100

500

estimation
error

approximation error

en(c)

(b)

Fig. 3.4: Test error of an SVR model on the noisy sinc data set introduced in Sec-
tion 3.4.1. We can observe a shift of the optimal σ of the Gaussian kernel to the
fine-grained structure of the problem, if we have seen enough data. In Figure (b),
approximation error is indicated by the black solid line, and the estimation error by the
black dashed line. The asymptotic approximation error is plotted as the blue dashed
line. One can see that uniform approximation of the estimation error is not the main
driving force, instead, the decay of the approximation error with smaller kernel widths
together with an increase of the estimation error at small kernel widths makes sure
that the minimum converges quickly.

the model which minimizes the empirical risk over some hypothesis set H. In
this setting, one can write the difference between the expected risk of the learned
predictor Rpgnq and the Bayes risk R˚ as follows (see also Section 12.1 in Devroy
et al. [1996] or Section 2.4.3 in Mohri et al. [2012])

Rpgnq ´R
˚ “

ˆ

Rpgnq ´ inf
gPH

Rpgq

˙

loooooooooooomoooooooooooon

estimation error

`

ˆ

inf
gPH

Rpgq ´R˚q

˙

loooooooooomoooooooooon

approximation error

.

The estimation error measures how far the chosen model is from the one which
would be asymptotically optimal, while the approximation error measures the dif-
ference between the best possible model in the hypothesis class and the true func-
tion. Using this decomposition, we can interpret the figure as follows (see Fig-
ure 3.4b): The kernel width controls the approximation error. For logpσq ě ´1.8,
the resulting hypothesis class is too coarse to represent the function under consid-
eration. It becomes smaller until it reaches the level of the Bayes risk as indicated
by the dashed blue line. For even larger training set sizes, we can assume that it
will stay on this level even for smaller kernel sizes.

The difference between the blue line and the upper lines shows the estimation
error. The estimation error has been extensively studied in statistical learning the-
ory and is known to be linked to different notions of complexity like VC-dimension
[Vapnik, 1998], fat-shattering dimension [Bartlett et al., 1996], or the norm in the
reproducing kernel Hilbert space (RKHS) [Evgeniou and Pontil, 1999]. A typical

60

3.2. Fast-Cross Validation via Sequential Testing (CVST)

result shows that the estimation error can be bounded by terms of the form

Rpgnq ď Rn `O

˜

c

dpHq log n

n

¸

,

where dpHq is some notion of complexity of the underlying hypothesis class. For
our figure, this means that we can expect the estimation error to become larger for
smaller kernel widths.

So basically, if we order the parameter configurations according to their com-
plexity, we make three observations:

1. For parameter configurations with small complexity (that is, large kernel
width), the approximation error will be high, but the estimation error will
be small.

2. For parameter configurations with high complexity, the approximation error
will be small, even optimal, but the estimation error will be large.

3. Also, as we see in Figure 3.4b, the approximation error seems to decrease
faster with increasing complexity than the estimation error increases.

In combination, the estimates at smaller training set sizes tend to underestimate
the true model complexity, but as the approximation error quickly decreases, the
minimum also converges to the true one. The fact that the estimation error is
larger for more complex models acts as a guard to choose too complex models.

Unfortunately, existing theoretical results are not able to bound the error suffi-
ciently tightly to make these arguments more exact. In particular, the speed of the
convergence on the minimum hinges on a tight lower bound on the approximation
error, and a realistic upper bound on the estimation error. Approximation errors
have been studied for example in the papers by Smale and Zhou [2003] and Stein-
wart and Scovel [2007], but the papers only prove upper bounds and the rates are
also worst-case rates which are likely not close enough to the true errors. On the
other hand, the mechanisms which lead to fast convergence of the minimum are
plausible when looking at concrete examples as we did above. Therefore, we will
assume in the following that the location of the best parameter configuration might
initially change but then become more or less stable quickly. We will use sequential
testing to introduce a safety zone which ensures that our method is robust against
these initial changes.

3.2 Fast-Cross Validation via Sequential Testing (CVST)

Recall from Section 3.1 that we have a data set consisting of N data points d1 “

pX1, Y1q, . . . , dN “ pXN , YN q P XˆY which we assume to be drawn i.i.d. from PX,Y .
We have a learning algorithm which depends on several parameters collected in a
configuration c P C. The goal is to select the configuration c˚ out of all possible
configurations C such that the learned predictor g has the best generalization error
with respect to some loss function ` : Y ˆ Y Ñ R.

61

3. Detection

Our approach attempts to speed up the model selection process by learning
just on subsamples of size n :“ sNS for 1 ď s ď S, starting with the full set of
configurations and eliminating clearly underperforming configurations at each step
s based on the performances observed in steps 1 to s. The main loop of Algorithm 2
on page 64 executes the following parts at each step s:

Ê The procedure learns a model on the first n data points for the remaining
configurations and stores the test errors on the remaining N ´ n data points
in the pointwise performance matrix Pp (Lines 10-14). This matrix Pp is
used on Lines 15-16 to estimate the top performing configurations via robust
testing and saves the outcome as a binary “top or flop” scheme accordingly.

Ë The procedure drops significant loser configurations along the way (Lines 17-
19) using tests from the sequential analysis framework.

Ì Applying robust, distribution free testing techniques allows for an early stop-
ping of the procedure, when we have seen enough data for a stable parameter
estimation (Line 20).

In the following we will discuss each step in the algorithm. A conceptual
overview of one iteration of the procedure is depicted in Figure 3.5 for reference.

3.2.1 Robust Transformation of Test Errors

To robustly transform the performance of configurations into the binary informa-
tion whether it is among the top-performing configurations or turns out to be a
flop, we rely on distribution-free tests. The basic idea is to calculate the pointwise
performance of a given configuration on data points not used for the learning of the
model and find the group of best configurations, which show a similar behavior.

We exemplify this procedure by the situation depicted in Figure 3.5 with K
remaining configurations c1, c2, . . . , cK which are ordered according to their mean
performances (i.e. sorted ascending with regard to their expected loss). We now
want to find the smallest index k ď K, such that the configurations c1, c2, . . . , ck
all show the same behavior on the remaining data points dn`1, dn`2, . . . , dN not
used in the current model learning process.

The rational behind our comparison procedure is three-fold: First, by ordering
the configurations by the mean performances we start with the comparison of the
currently best performing configurations first. Second, by using the first n :“ s∆
data points for the model building and the remaining N ´n data points for the es-
timation of the average performance of each configuration we compensate the error
introduced by learning on smaller subsets of the data by better error estimates on
more data points. I.e., for small s we will learn the model on relatively small sub-
sets of the overall available data while we estimate the test error on relatively large
portions of the data and vice versa. Third, by applying test procedures directly
on the error estimates of individual data points we exploit a further robustifying
pooling effect: if we have outliers in the testing data, all models will be affected by
this and therefore the overall testing result will not be affected.

62

3.2. Fast-Cross Validation via Sequential Testing (CVST)

data points step

conf. dn+1 dn+2 · · · dN−1 dN E[`] 1 2 3 4 5 6 7 8 9 10

c1 0.6 0.6 -0.8 -0.4 0.5 top 0 1 0 1 1 1 1 0 1 1
c2 0.5 0.4 -0.3 0.0 0.5 top 1 1 0 1 1 1 0 1 1 1
c3 0.1 0.5 · · · -0.9 -0.1 0.6 top 0 1 1 1 1 1 0 1 1 1
...

...
...

... Ê ...
cK−2 -1.4 -0.9 0.5 0.5 1.5 flop → 0 1 1 0 0 1 0 0 0 0
cK−1 -2.2 -1.9 2.1 1.5 1.5 flop 0 0 0 0 1 0 0 0 0 0 (†)
cK -1.9 -2.4 · · · 1.9 2.4 1.6 flop 0 1 0 0 0 0 0 0 0 0 (†)

Pointwise performance matrix Pp Trace matrix TS

Ë ↙ Ì ↓

0 5 10 15 20

0
5

10
15

20

Step

C
um

ul
at

iv
e

S
um

0 0 0 0
1 0 0 0 0 0

1
1 0

1
1

1 0
1

1
1

X

∆H0(π0, π1, βl, αl)

Sa(π0, π1, βl, αl)
WINNER

LOSER

c2

ck−1

7 8 9 10

c1 1 0 1 1

?
=

c2 0 1 1 1
c3 0 1 1 1

...
...

cK−2 0 0 0 0

similarPerformance(·)

Fig. 3.5: One step of CVST. Shown is the situation in step s “ 10. Ê A model based
on the first n data points is learned for each configuration (c1 to cK). Test errors
are calculated on the remaining data (dn`1 to dN) and transformed into a binary
performance indicator via robust testing. Ë Traces of configurations are filtered via
sequential analysis (cK´1 and cK are dropped). Ì The procedure checks whether the
remaining configurations perform equally well in the past and stops if this is the case.
See Appendix B.7 for a complete example run.

To find the top performing configurations for step s we look at the outcome of
the learned model for each configuration, i.e. we subsequently take the rows of the
pointwise performance matrix Pp into account and apply either the Friedman test
[Friedman, 1937] for regression experiments or the Cochran’s Q test [Cochran, 1950]
to see whether we observe statistically significant differences between configurations
(see Appendix A.4 for a summary of these tests).

More formally, the function topConfigurations takes the pointwise perfor-
mance matrix Pp as input and rearranges the rows according to the mean per-

formances of the configurations yielding a matrix rPp. Now for k P t2, 3, . . . ,Ku
we check, whether the first k configurations show a significantly different effect on
the N ´ n data points. This is done by executing either the Friedman test or the
Cochran’s Q test on the submatrix rPpr1 : k, 1 : pN ´ nqs with the pre-specified
significance level α. If the test does not indicate a significant difference in the
performance of the k configurations, we increment k by one and test again until we
find a significant effect. Suppose we find a significant effect at index k̃. Since all
previous tests indicated no significant effect for the k̃ ´ 1 configurations we argue,
that the addition of the k̃th configuration must have triggered the test procedure to

63

3. Detection

Algorithm 2 CVST Main Loop

1: function CVST(d1, . . . , dN , S, C, α, βl, αl, wstop)
2: ∆ Ð N{S Ź Initialize subset increment
3: nÐ ∆ Ź Initialize model size
4: test ÐgetTest(S, βl, αl) Ź Get sequential test
5: @s P t1, . . . , Su, c P C : TSrc, ss Ð 0
6: @s P t1, . . . , Su, c P C : PSrc, ss Ð NA
7: @c P C : isActive[c] Ðtrue
8: for sÐ 1 to S do
9: @i P t1, . . . , N ´ nu, c P C : Pprc, is Ð NA Ź Initialize pointw. perf.

10: for c P C do
11: if isActive[c] then
12: g “ gnpcq Ź Learn model on the first n data points
13: @i P t1, . . . , N ´ nu : Pprc, is Ð `pgpxn`iq, yn`iq Ź Eval. on rest

14: PSrc, ss Ð
1

N´n

řN´n
i“1 Pprc, is Ź Store mean performance

15: indextop ÐtopConfigurations(Pp, α) Ź Find the top configurations
16: TS [indextop, s] Ð1 Ź And set entry in trace matrix
17: for c P C do
18: if isActive[c] and isFlopConfiguration(test, TSrc, 1 : ss) then
19: isActive[c] Ðfalse Ź De-activate flop configuration

20: if similarPerformance(TS [isActive, ps´ wstop ` 1q : s], α) then
21: break
22: nÐ n`∆

23: return selectWinnner(PS , isActive, wstop, s)

indicate that in the set of these k̃ configurations is at least one configuration, which
shows a significantly different behavior than all other configurations. Thus, we flag
the configurations 1, . . . , k̃ ´ 1 as top configurations and the remaining k̃, . . . ,K
configurations as flop configurations. Note that this incremental procedure is not
a multiple testing situation, since we are not interested in a joint inference over
all hypotheses but use each individual test to decide whether we can observe a
significant effect due to the addition of a new configuration.

Note that for the actual calculation of the test errors we apply an incremen-
tal model building process, i.e., the data added in each step on Line 22 increases
the training data pool for each step by a set of size ∆. This would allow online
algorithms to adapt their model also incrementally leading to even further speed
improvements. The results of this first step are collected for each configuration in
the trace matrix TS (see Figure 3.5, top right), which shows the gradual transfor-
mation for the last 10 steps of the procedure highlighting the results of the last
test. So the robust transformation of the test error boils down the performance of
all models learned on the first n data points to a new column in the trace matrix
TS recording the history of each configuration in a top or flop scheme.

64

3.2. Fast-Cross Validation via Sequential Testing (CVST)

3.2.2 Determining Significant Losers

Having transformed the test errors in a scale-independent top or flop scheme, we
can now test whether a given parameter configuration is an overall loser. Sequential
testing of binary random variables is addressed in the sequential analysis frame-
work developed by Wald [1947]. Originally it has been applied in the context of
production quality assessment (compare two production processes) or biological
settings (stop bioassays as soon as the gathered data leads to a significant result).

The main idea is the following: One observes a sequence of i.i.d. Bernoulli
variables B1, B2, . . ., and wants to test whether these variables are distributed
according to the hypotheses H0 : Bi „ π0 or the alternative hypotheses H1 :
Bi „ π1 with π0 ă π1 denoting the according success probabilities of the Bernoulli
variables. Both significance levels for the acceptance ofH1 andH0 can be controlled
via the user-supplied meta-parameters αl and βl. The test computes the likelihood
for the so far observed data and rejects one of the hypothesis when the respective
likelihood ratio exceeds an interval controlled by the meta-parameters. It can be
shown that the procedure has a very intuitive geometric representation, shown in
Figure 3.5, lower left: The binary observations are recorded as cumulative sums at
each time step. If this sum exceeds the upper red line L1, we accept H1; if the sum
is below the lower red line L0 we accept H0; if the sum stays between the two red
lines we have to draw another sample.

Wald’s test requires that we fix both success probabilities π0 and π1 beforehand.
Since our main goal is to use the sequential test to eliminate underperformers, we
choose the parameters π0 and π1 of the test such that H1 (a configuration wins)
is postponed as long as possible. This will allow the CVST algorithm to keep
configurations until the evidence of their performances definitely shows that they
are overall loser configurations. At the same time, we want to maximize the area
where configurations are eliminated (region4H0 denoted by “LOSER” in Fig. 3.5),
rejecting as many loser configurations on the way as possible:

pπ0, π1q “ argmax
π10,π

1
1

4H0pπ
1
0, π

1
1, βl, αlq (3.2)

s.t. Sapπ
1
0, π

1
1, βl, αlq P pS ´ 1, Ss

with Sap¨, ¨, ¨, ¨q is the earliest step of acceptance of H1 marked by an X in Fig. 3.5
and the variable S defined as the total number of steps. Using results from Wald
[1947] the global optimization in Equation (3.3) can be solved as follows:

π0 “ 0.5^ π1 “ min
π11

ASNpπ0, π
1
1|π “ 1.0q ě S (3.3)

where ASNp¨, ¨q (Average Sample Number) is the expected number of steps until
the given test will yield a decision, if the underlying success probability of the
tested sequence is π “ 1.0. Equipped with this test, we can check each remaining
trace on Line 18 of Algorithm 2 in the function isFlopConfiguration whether
it is a statistically significant flop configuration (i.e. exceeds the lower decision
boundary L0) or not.

65

3. Detection

Note that sequential analysis formally requires i.i.d. variables, which might
not be true for configurations which transform to a winner configuration later on,
thereby changing their behavior from a flop to a top configuration. Therefore we
tuned our procedure to use the sequential analysis framework just for the deci-
sion whether a configuration is an overall loser or not. The test is adjusted for this
switch of roles by keeping potential configurations as long as possible and just drop
them if its trace statistical significantly corresponds to a binomial with π ă 0.5.
For details of the open sequential analysis consult Wald [1947] or see for instance
Wetherill and Glazebrook [1986] for a general overview of sequential testing pro-
cedures. Appendix B.4 contains the necessary details needed to implement the
proposed testing scheme for the CVST algorithm.

3.2.3 Early Stopping and Final Winner

Finally, we employ an early stopping rule (Line 20) which takes the last wstop

columns from the trace matrix and checks whether all remaining configurations
performed equally well in the past. In Figure 3.5 this submatrix of the overall
trace matrix TS is shown for a value of wstop “ 4 for the remaining configurations
after step 10. For the test, we again apply the Cochran’s Q test (see Appendix A.4)
in the similarPerformance procedure on the submatrix of TS . Figure 3.6 illus-
trates a complete run of the CVST algorithm for roughly 600 configurations. Each
configuration marked in red corresponds to a flop configuration and a black one to
a top configuration. Finally, configurations marked in gray have been dropped via
the sequential test during the CVST algorithm. The small zoom-ins in the lower
part of the picture show the last wstop remaining configurations during each step
which are used in the evaluation of the early stopping criterion. We can see that the
procedure keeps on going if there is a heterogeneous behavior of the remaining con-
figurations (zoom-in is mixed red/black). When the the remaining configurations
all performed equally well in the past (zoom-in is nearly black), the early stopping
test does not see a significant effect anymore and the procedure is stopped.

Finally, in the procedure selectWinner, Line 23, the winning configuration
is picked from the configurations which have survived all steps as follows: For
each remaining configuration we determine the rank in a step according to the
average performance during this step. Then we average the rank over the last
wstop steps and pick the configuration which has the lowest mean rank. This way,
we make most use of the data accumulated during the course of the procedure. By
restricting our view to the last wstop observations we also take into account that the
optimal parameter might change with increasing model size: since we focus on the
most recent observations with the biggest models, we always pick the configuration
which is most suitable for the data size at hand.

3.2.4 Meta Parameters for the CVST

The CVST algorithm has a number of meta parameters which the experimenter
has to determine beforehand. In this section we give suggestions how to choose
these parameters. The parameter α controls the significance level of the test for

66

3.3. Theoretical Properties of the CVST Algorithm

100

200

300

400

500

600

1 2 3 4 5 6 7
Step

C
on

fig
ur

at
io

n Status

flop

top

out

s = 5 s = 6 s = 7

· · STOP!

50

100

150

3 4 5

20

40

60

80

4 5 6

20

40

60

5 6 7

Fig. 3.6: The upper plot shows a run of the CVST algorithm for roughly 600 config-
urations. At each step a configuration is marked as top (black), flop (red) or dropped
(gray). The zoom-ins show the situation for step 5 to 7 without the dropped entries.
The early stopping rule takes affect in step 7, because the remaining configurations
performed equally well during step 5 to 7.

similar behavior in each step of the procedure. We suggest to set this to the
usual level of α “ 0.05. Furthermore βl and αl control the significance level of
the H0 (configuration is a loser) and H1 (configuration is a winner) respectively.
We suggest an asymmetric setup by setting βl “ 0.1, since we want to drop loser
configurations relatively fast and αl “ 0.01, since we want to be really sure when
we accept a configuration as overall winner. Finally, we set wstop to 3 for S “ 10
and 6 for S “ 20, as we have observed that this choice works well in practice.

3.3 Theoretical Properties of the CVST Algorithm

After having introduced the overall concept of the CVST algorithm, we now focus
on the theoretical properties, which ensure the proper working of the procedure:
Exploiting guarantees of the underlying sequential testing framework, we show
how the experimenter can control the procedure to work in a stable regime and
furthermore prove error bounds for the CVST algorithm. Additionally, we show
how the CVST algorithm can be used to work best on a given time budget.

67

3. Detection

3.3.1 Error Bounds in a Stable Regime

As discussed in Section 3.1 the performance of a configuration might change if we
feed the learning algorithm more data. Therefore, a reasonable algorithm exploiting
the learning on subsets of the data must be capable of dealing with these difficulties
and potential change points in the behavior of certain configurations. In this section
we investigate some theoretical properties of the CVST algorithm which makes it
particularly suitable for learning on increasing subsets of the data.

The first property of the open sequential test employed in the CVST algorithm
comes in handy to control the overall convergence process and to assure that no
configurations are dropped prematurely:

Lemma 2 (Safety Zone) Given the CVST algorithm with significance level αl, βl
for being a top or flop configuration respectively, and maximal number of steps S,
and a global winning configuration, which looses for the first scp iterations, as long
as

0 ď
scp
S
ď
ssafe
S

with ssafe “
log βl

1´αl

log 2´ S

b

1´βl
αl

and S ě

R

log
1´ βl
αl

{ log 2

V

,

the probability that the configuration is dropped by the CVST algorithm is zero.

Proof The details of the proof are deferred to Appendix B.4.

The consequence of Lemma 2 is that the experimenter can directly control via
the significance levels αl, βl until which iteration no premature dropping should
occur and therefore guide the whole process into a stable regime in which the
configurations will see enough data to show their real performance.

Equipped with this property we can now take a thorough look at the worst
case performance of the CVST algorithm: Suppose a global winning configuration
has been constantly marked as a loser up to the safety zone, because the amount
of data available up to this point was not sufficient to show the superiority of this
configuration. Given that the global winning configuration now sees enough data
to be marked as a winning configuration by the binarization process throughout
the next steps with probability π we can give exact error bounds of the overall
process by solving specific recurrences.

Figure 3.7 gives a visual impression of our worst case analysis for the example of
a 20 step CVST execution: The winning configuration generated a straight line of
zeros up to the safety zone of 7. Our approach to bound the error of the fast cross-
validation now consists essentially in calculating the probability mass that ends
up in the non-loser region. The following lemma shows how we can express the
number of paths which lead to a specific point on the graph by a two-dimensional
recurrence relation:

Lemma 3 (Recurrence Relation) Denote by PpsR, sCq the number of paths,
which lead to the point at the intersection of row sR and column sC and lie above

68

3.3. Theoretical Properties of the CVST Algorithm

● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
2

4
6

8
10

12
14

16
18

20

Step

N
um

be
r

of
 W

in
s

1
1
1

1
2

1
3
2

1
4
5

1
5
9
5

1
6
14
14

1
7

20
28

1
8

27
48
28

1
9

35
75
76

1
10
44
110
151
76

1
11
54
154
261
227

1
12
65
208
415
488
227

WINNER

LOSER

SAFETY−
ZONE

Fig. 3.7: Visualization of the worst-case scenario for the error probability of the CVST
algorithm: a global winner configuration is labeled as a constant loser until the safety
zone is reached. Then we can calculate the probability that this configuration endures
the sequential test by a recurrence scheme, which counts the number of remaining
paths ending up in the non-loser region.

the lower decision boundary L0 of the sequential test. Given the worst case scenario
described above the number of paths can be calculated as follows:

PpsR, sCq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if sR “ 0^ c ď ssafe “
log

βl
1´αl

log 2´ S

c

1´βl
αl

1 if sR “ sC ´ ssafe

PpsR, sC ´ 1q ` PpsR ´ 1, sC ´ 1q if L0pcq ă sR ă sC ´ ssafe

0 otherwise.

Proof We split the proof into the four cases:

1. The first case is by definition: the configuration has a straight line of zeros
up to the safety zone ssafe.

2. The second case describes the diagonal path starting from the point p1, ssafe`

1q: by construction of the paths (1 means diagonal up; 0 means one step to
the right) the diagonal path can just be reached by a single combination,
namely a straight line of ones.

3. The third case is the actual recurrence: if the given point is above the lower
decision bound L0, then the number of paths leading to this point is equal to
the number of paths that lie directly to the left of this point plus the paths
which lie directly diagonal downwards from this point. From the first paths

69

3. Detection

this point can be reached by a direct step to the right and from the latter the
current point can be reached by a diagonal step upwards. Since there are no
other options than that by construction, this equality holds.

4. The last case describes all other paths, which either lie below the lower deci-
sion bound and therefore end up in the loser region or are above the diagonal
and thus can never be reached.

This recurrence is visualized in Figure 3.7. Each number on the grid gives the
number of valid, non-loser paths, which can reach the specific point. With this
recurrence we are now able to prove a global, worst-case error probability of the
fast cross-validation.

Theorem 4 (Error Bound of CVST) Suppose a global winning configuration
has reached the safety zone with a constant loser trace and then switches to a
winner configuration with a success probability of π. Then the error that the CVST
algorithm erroneously drops this configuration can be determined as follows:

P preject πq ď 1´
r
ÿ

i“tL0pSqu`1

Ppi, Sqπip1´πqr´i with r “ S´

—

—

—

–

log βl
1´αl

log 2´ S

b

1´βl
αl

ffi

ffi

ffi

fl

Proof The basic idea is to use the number of paths leading to the non-loser
region to calculate the probability that the configuration actually survives. This
corresponds to the last column of the example in Figure 3.7. Since we model
the outcome of the binarization process as a binomial variable with the success
probability of π, the first diagonal path has a probability of πr. The next paths
each have a probability of πpr´1qp1´ πq1 and so on until the last viable paths are
reached in the point (tL0pSqu ` 1, Sq. So the complete probability of the survival
of the configuration is summed up with the corresponding number of paths from
Lemma 3. Since we are interested in the complementary event, we subtract the
resulting sum from one, which concludes the proof.

Note that the early stopping rule does not interfere with this bound: The worst
case is indeed that the process goes on for the maximal number of steps S, since
then the probability mass will be maximally spread due to the linear lower decision
boundary and the corresponding exponents are maximal. So if the early stopping
rule terminates the process before reaching the maximum number of steps, the
resulting error probability will be lower than our given bound.

The error bound for different success probabilities and the proposed sequential
test with αl “ 0.01 and βl “ 0.1 are depicted in Figure 3.8. First of all we can
observe a relative fast convergence of the overall error with increasing maximal
number of steps S. The impact on the error is marginal for the shown success
probabilities, i.e. for instance for π “ 0.95 the error nearly converges to the opti-
mum of 0.05. Note, that the oscillations especially for small step sizes originate

70

3.3. Theoretical Properties of the CVST Algorithm

S

E
rr

or
 B

ou
nd

0.05

0.10

0.15

0.20

10 15 20 25 30

π

0.9

0.925

0.95

0.975

0.99

Fig. 3.8: Error bound of the fast cross-validation as proven in Theorem 4 for different
success probabilities π and maximal step sizes S. To mark the global trend we fitted
a LOESS curve given as dotted line to the data.

from the rectangular grid imposed by the interplay of the Pp¨q-operator and the
lower decision boundary L0 leading to some fluctuations. Overall, the chosen test
scheme allows us not only to control the safety zone but also has only a small im-
pact on the error probability, which once again shows the practicality of the open
sequential ratio test for the fast cross-validation procedure. By using this statis-
tical test we can balance the need for a conservative retention of configurations
as long as possible with the statistically controlled dropping of significant loser
configurations with nearly no impact on the overall error probability. Our analysis
assumes that the experimenter has chosen the right safety zone for the learning
problem at hand. For small data sizes it could happen that this safety zone was
chosen too small, therefore the change point of the global winning configuration
might lie outside the safety zone. While this will not occur often for today’s sizes
of data sets we have analyzed the behavior of CVST under this circumstances in
Appendix B.5 to give a complete view of the properties of the algorithm.

3.3.2 Fast-Cross Validation on a Time Budget

While the CVST algorithm can be used out of the box to speed up regular cross-
validation, the aforementioned properties of the procedure come in handy when
we face a situation in which an optimal parameter configuration has to be found
given a fixed computational budget. If the time is not sufficient to perform a full
cross-validation or the amount of data that has to be processed is too big to explore
a sufficiently spaced parameter grid with ordinary cross-validation in a reasonable
time, the CVST algorithm allows for getting the most model selection information
out of the data given the specified constraints.

This is achieved by calculating a maximal steps parameter S which leads to a
near coverage of the available time budget T as depicted in Figure 3.9. The idea

71

3. Detection

c1
c2
... · · ·

c(1−r)K
...

cK−1 · · · · · ·
cK

13

S3 t
23

S3 t sr × S (S−1)3

S3 t S3

S3 t

Fig. 3.9: Approximation of the time consumption for a cubic learner. In each step we
calculate a model on a subset of the data, so the model calculation time t on the full
data set is adjusted accordingly. After sr ˆ S steps of the process, we assume a drop
to r ˆK remaining configurations.

is to specify an expected drop ratio r of configurations and a safety zone bound
ssafe. Then we can give a rough estimate of the total time needed for a CVST
with a total number of steps S, equating this with the available time budget T and
solving for S. More formally, given K parameter configurations and a pre-specified
safety zone bound ssafe “ sr ˆ S with 0 ă sr ă 1 to ensure that no configuration
is dropped prematurely, the computational demands of the CVST algorithm are
approximated by the sum of the time needed before step ssafe involving the model
calculation of all K configurations and after step ssafe for rˆK configurations with
0 ă r ă 1. As we will see in the experimental evaluation section, this assumption
of a given drop rate of p1´ rq leading to the form of time consumption as depicted
in Figure 3.9 is quite common. The observed drop rate corresponds to the overall
difficulty of the problem at hand.

Given the computation time t needed to perform the model calculation on the
full data set, we prove in Appendix B.6 that the optimal maximum step parameter
for a cubic learner can be calculated as follows:

S “

—

—

—

–

2T ´Ktp1´ rqs3
r ´ rKt

pp1´ rqs4
r ` rqKt

`

d

„

Ktp1´ rqs3
r ` rKt´ 2T

pp1´ rqs4
r ` rqKt

2

´
p1´ rqs2

r ` r

p1´ rqs4
r ` r

ffi

ffi

ffi

fl

After calculating the maximal number of steps S given the time budget T , we can
use the results of Lemma 2 to determine the maximal βl given a fixed αl, which
yields the requested safety zone bound ssafe.

3.4 Experiments

Before we evaluate the CVST algorithm on real data, we investigate its perfor-
mance on controlled data sets. Both for regression and classification tasks we
introduce special tailored data sets to highlight the overall behavior and to stress
test the fast cross-validation procedure. To evaluate how the choice of learning

72

3.4. Experiments

method influences the performance of the CVST algorithm, we compare kernel
logistic regression (KLR) against a ν-support vector machine (SVM) for classifi-
cation problems and kernel ridge regression (KRR) versus ν-SVR for regression
problems each using a Gaussian kernel [see Roth, 2001, Schölkopf et al., 2000]. In
all experiments we use a 10 step CVST with parameter settings as described in
Section 3.2.4 (i. e. α “ 0.05, αl “ 0.01, βl “ 0.1, wstop “ 3) to give us an upper
bound of the expected speed gain. Note that we could get even higher speed gains
by either lowering the number of steps or increasing βl. From a practical point of
view we believe that the settings studied are highly realistic.

3.4.1 Artificial Data Sets

To assess the quality of the CVST algorithm we first examine its behavior in a
controlled setting. We have seen in our motivation section that a specific learning
problem might have several layers of structure which can only be revealed by the
learner if enough data is available. For instance in Figure 3.4a we can see that the
first optimal plateau occurs at σ “ 0.1, while the real optimal parameter centers
around σ “ 0.01. Thus, the real optimal choice just becomes apparent if we have
seen more than 200 data points.

In this section we construct a learning problem both for regression and classifi-
cation tasks which could pose severe problems for the CVST algorithm: If it stops
too early, it will return a suboptimal parameter set. We evaluate how different
intrinsic dimensionalities of the data and various noise levels affect the perfor-
mance of the procedure. For classification tasks we use the noisy sine data set,
which consists of a sine uniformly sampled from a range controlled by the intrinsic
dimensionality d:

y “ sinpxq ` ε with ε „ N p0, n2q, x P r0, 2πds,

n P t0.25, 0.5u, d P t5, 50, 100u

The labels of the sampled points are just the sign of y. For regression tasks we
devise the noisy sinc data set, which consists of a sinc function overlayed with a
high-frequency sine:

y “ sincp4xq `
sinp15dxq

5
` ε with ε „ N p0, n2q, x P r´π, πs,

n P t0.1, 0.2u, d P t2, 3, 4u

For each of these data sets we generate 1,000 data points and run a 10 step CVST
and compare its results with a normal 10-fold cross-validation on the full data set.
We record both the test error on additional 10,000 data points and the time con-
sumed for the parameter search. The explored parameter grid contains 610 equally
spaced parameter configurations for each method (log10pσq P t´3,´2.9, . . . , 3u and
ν P t0.05, 0.1, . . . , 0.5u for SVM/SVR and log10pλq P t´7,´6, . . . 2u for KLR/KRR,
respectively). This process is repeated 50 times to gather sufficient data for an in-
terpretation of the overall process.

73

3. Detection

n=0.25 n=0.50

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

d=5 d=50 d=100 d=5 d=50 d=100

M
S

E
 F

as
t C

V
 −

 M
S

E
 F

ul
l C

V

Method

KLR

SVM

n=0.25 n=0.50

0

20

40

60

80

100

●●●

d=5 d=50 d=100 d=5 d=50 d=100

T
im

e
F

ul
l C

V
 /

T
im

e
Fa

st
 C

V

Method

KLR

SVM

Fig. 3.10: Difference in mean square error (left) and relative speed gain (right) for
the noisy sine data set.

d=5 d=50 d=100

0

100

200

300

400

500

600

0

100

200

300

400

500

600

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

● ●

●●
●
●
●

●
●

●
●

●

●

●
●
●

●
●

●
●

●
●

● ●

●

●●
●●
●

●

●
●●
●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●● ●● ● ●

●

●●
●

●●●●
●

●

●

●●●

●
●

●

●

●
●

●●●
●

●

●● ●●●
●

●

●●

●●
●

●

●
●
●
●

●
●

●

●
●

●

●●
●

●

●

●

●

● ●

●
●●●

●

●●●●●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●
●

●

●
●

●

n=
0.25

n=
0.50

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Step

N
um

be
r

of
 C

on
fig

ur
at

io
ns

Method

KLR

SVM

Fig. 3.11: Remaining configurations after each step for the noisy sine data set.

The results for the noisy sine data set can be seen in Figure 3.10. The upper
boxplots show the distribution of the difference in mean square error of the best
parameter determined by CVST and normal cross-validation. In the low noise
setting (n “ 0.25) the CVST algorithm finds the same optimal parameter as the
normal cross-validation up to the intrinsic dimensionality of d “ 50. For d “ 100
the CVST algorithm gets stuck in a suboptimal parameter configuration yielding
an increased classification error compared to the normal cross-validation. This
tendency is slightly increased in the high noise setting (n “ 0.5) yielding a broader
distribution. The classification method used seems to have no direct influence on
the difference, both SVM and KLR show nearly similar behavior. This picture

74

3.4. Experiments

n=0.10 n=0.20

0.000

0.005

0.010

0.015

0.020

●
●
●●
●●

●
●

●

●

●

●●

●

●●

●

●●

●

●
●

●
●

●●
●

●

● ●
●

●

●

●●●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●●

d=2 d=3 d=4 d=2 d=3 d=4

M
S

E
 F

as
t C

V
 −

 M
S

E
 F

ul
l C

V

Method

KRR

SVR

n=0.10 n=0.20

0

20

40

60

80

100

●

●

●

●

●

●

●

d=2 d=3 d=4 d=2 d=3 d=4

T
im

e
F

ul
l C

V
 /

T
im

e
Fa

st
 C

V

Method

KRR

SVR

Fig. 3.12: Difference in mean square error (left plots) and relative speed gain (right
plots) for the noisy sinc data set.

d=2 d=3 d=4

0

100

200

300

400

500

600

0

100

200

300

400

500

600

●
●
●● ●

●
●●

●

●
●
●
●
●
●
● ●

●
●
●
●
●
●

●●

● ●

●●● ●
●
●
●

●
●

●

●
●

●

●
●

●

●
●

●●

●
● ● ●

●
●●

●
●●

●●●●

●●

●
●●

●

●

●

●●

●●

●

●

●

●

● ●
●

●●

●
●

●

●

●

●

●
●
●

●

●
●

● ●

●

●
●

●

●●●● ●
●●

● ●

●●●●●
●

●
●

●●●
●

●●
● ● ●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ● ●

n=
0.10

n=
0.20

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Step

N
um

be
r

of
 C

on
fig

ur
at

io
ns

Method

KRR

SVR

Fig. 3.13: Remaining configurations after each step for the noisy sinc data set.

changes when we look at the speed gains: While the SVM nearly always ranges
between 15 and 19, the KLR shows a speed-up between 20 and 60 times. The
variance of the speed gain is generally higher compared to the SVM which seems
to be a direct consequence of the inner workings of KLR. Basically the main loop
performs at each step a matrix inversion of the whole kernel matrix until the
calculated coefficients converge. Obviously this convergence criterion leads to a
relative wide-spread distribution of the speed gain when compared to the SVM
performance.

Figure 3.11 shows the distribution of the number of remaining configurations
after each step of the CVST algorithm. In the low noise setting (upper row) we

75

3. Detection

n=0.25 n=0.50

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

●

●●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

d=
50

d=
100

N=1000 N=2000 N=5000 N=1000 N=2000 N=5000

M
S

E
 F

as
t C

V
 −

 M
S

E
 F

ul
l C

V
Noisy Sine Data Sets

n=0.10 n=0.20

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

●
●
●
●
●●●
●
●

●●●
●●
● ●

● ●●

●●

●

●

●●●
●
●●

d=
3

d=
4

N=1000 N=2000 N=5000 N=1000 N=2000 N=5000

M
S

E
 F

as
t C

V
 −

 M
S

E
 F

ul
l C

V

Noisy Sinc Data Sets

Fig. 3.14: Difference in mean square error for SVM/SVR with increasing data set size
for noisy sine (left) and the noisy sinc (right) data sets. By adding more data, the
CVST algorithm converges to the correct parameter configuration.

can observe a tendency of bigger dropping rates up to d “ 100. For the high noise
setting (lower row) we observe a steady increase of kept configurations combined
with a higher spread of the distribution. Overall we see a very effective dropping
rate of configurations for all settings. The SVM and the KLR show nearly similar
behavior so that the higher speed gain of the KLR we have seen before is a direct
consequence of the algorithm itself and is not influenced by the CVST algorithm.

The performance on the noisy sinc data set is shown in Figure 3.12. The
first striking observation is the transition of the CVST algorithm which can be
observed for the intrinsic dimensionality of d “ 4. At this point the overall excellent
performance of the CVST algorithm is on the verge of choosing a suboptimal
parameter configuration. This behavior is more evident in the high noise setting.
The SVR nearly always shows a smaller difference than the KRR and is capable
of delaying the decline in the high noise setting at least partly. The speed gain
observed is nearly constant over the different dimensionalities and noise levels and
ranges between 15 and 20 for the SVR and 60 to 80 for KRR.

This is a direct consequence of the behavior which can be observed in the
number of remaining configurations shown in Figure 3.13. Compared to the clas-
sification experiments the drop is much more drastic. The intrinsic dimensionality
and the noise level show a small influence (higher dimensionality or noise level
yields more remaining configurations) but the overall variance of the distribution
is much smaller than in the classification experiments.

In Figure 3.14 we examine the influence of more data on the performance of
the CVST algorithm. Both for the noisy sine and noisy sinc data set we are able
to estimate the correct parameter configuration for all noise and dimensionality

76

3.4. Experiments

settings if we feed the CVST with enough data.2 Clearly, the CVST is capable of
extracting the right parameter configuration if we increase the amount of data to
2000 or 5000 data points, rendering our method even more suitable for big data
scenarios: If data is abundant, CVST will be able to estimate the correct parameter
in a much smaller time frame.

3.4.2 Benchmark Data Sets

After demonstrating the overall performance of the CVST algorithm on controlled
data sets we will investigate its performance on real life and well-known benchmark
data sets. For classification we pick a representative choice of data sets from the
IDA benchmark repository [see Rätsch et al. 20013] and add the static feature data
set from the Cujo system [Rieck et al., 2010].4 Furthermore we add the first two
classes with the most entries of the covertype data set [see Blackard and Dean,
1999]. Then we follow the procedure of the paper in sampling 2,000 data points
of each class for the model learning and estimate the test error on the remaining
data points. For regression we pick the data used in Donoho and Johnstone [1994]
and add the bank32mn, pumadyn32mn and kin32mn of the Delve repository.5

We process each data set as follows: First we normalize each variable of the
data to zero mean and variance of one, and in case of regression we also normalize
the dependent variable. Then we split the data set in half and use one part for
training and the other for the estimation of the test error. This process is repeated
50 times to get sufficient statistics for the performance of the methods. As in the
artificial data setting we compare the difference in test error and the speed gain of
the fast and normal cross-validation on the same parameter grid of 610 values.6

Figure 3.15 shows the result for the classification data sets (left side) and the
regression data sets (right side). The upper panels depict the difference in mean
square error (MSE). For the classification tasks this difference never exceeds two
percent points showing that although the fast cross-validation procedure in some
cases seems to pick a suboptimal parameter set, the impact of this false decision is
small. The same holds true for the regression tasks: since the dependent variables
for all problems have been normalized to zero mean and variance of one, the differ-
ences in MSE values are comparable. We observe that as for the classification tasks
we see just a very small difference in MSE. Although for some problems the CVST
algorithm picks a suboptimal parameter set, even then the differences in error are
always relatively small. The learners have hardly any impact on the behavior; just
for the covertype and the blocks data set we see a significant difference of the corre-

2Note, that we have to limit this experiment to the SVM/SVR method, since the full cross-
validation of the KLR/KRR would have taken to much time to compute.

3Available at http://www.mldata.org.
4To allow for efficient calculation we precomputed the kernel matrix and thus randomly picked

just 20.000 instances of the benign scripts and all of the malicious ones.
5Available at http://www.cs.toronto.edu/„delve.
6For the blocks, bumps, and doppler data set of Donoho and Johnstone [1994] we had to adjust

the range of σ to log10pσq P t´6,´5.9, . . . , 0u to adjust to the small structure found in these data
sets. For the cujo data set of [Rieck et al., 2010] we used a linear kernel and expanded the grid to
contain 2, 3, and 4 token n-grams.

77

3. Detection

Classification Regression

−0.04

−0.02

0.00

0.02

0.04

0.06

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

ba
na

na

co
vt

yp
e

cu
jo

ge
rm

an

im
ag

e

rin
gn

or
m

sp
lic

e

tw
on

or
m

w
av

ef
or

m

ba
nk

bl
oc

ks

bu
m

ps

do
pp

le
r

he
av

is
in

e

ki
n

pu
m

ad
yn

M
S

E
 F

as
t C

V
 −

 M
S

E
 F

ul
l C

V

Method

K[L|R]R

SV[M|C]

Classification Regression

0

50

100

150

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

ba
na

na

co
vt

yp
e

cu
jo

ge
rm

an

im
ag

e

rin
gn

or
m

sp
lic

e

tw
on

or
m

w
av

ef
or

m

ba
nk

bl
oc

ks

bu
m

ps

do
pp

le
r

he
av

is
in

e

ki
n

pu
m

ad
yn

T
im

e
F

ul
l C

V
 /

T
im

e
Fa

st
 C

V

Method

K[L|R]R

SV[M|C]

Fig. 3.15: Difference in mean square error (upper plots) and relative speed gain (lower
plots) for the benchmark data sets.

78

3.4. Experiments

● ●

●

●
●●

●

●●
●

●●

●

●
●
●

●

●●●●●●●●● ●●●●●●●●●●●●

●

●

●

●●●

●
●●
●

●●

●

●

●

● ●

●●●

●

●
●

●

●●
●
●
●●●

●

●
● ●

●
●
●
●●

●

●
●

●

●

●●●●

●

●
●

●

●●●

●

●●

●

●

●●

●

●

●
●

●

● ●

●
● ●

●
●

●
●

●

●
●

●

●●

●

●
●
●

●

●● ●
●

●
●
●

●

●●
●●●
●●

●
●
●
●

●●
●●●

●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●
●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●●●●

●

●

●
●●●
●
●

●

●

●

●

●
●

●●

●●

●

●

●
●
●

●

●

●
●●●

●
●
●
●

●
●●●

●
●

●

●●
●

●

●●●●●●●●●●●● ●●● ●●● ●●

●●

●

●●●
● ●

●
● ● ●

●●●●

●●●●●
●
●
●
●

●●●●●●●●●●

●●
●
●
●
●
●
●●

●
●●

●●●●
●●
●●

●

●●●
●

●●

●

●●●●●●●●●●

●

●
●

●●

●● ●

●

●●

●

●

●
●●
●

●

●●

●
●

●

●

●

●● ●●

●

●

●
●
●●●●
●●

●

●

●●●
●

●
●●●● ●

●●

●

●

●
● ●

●●

●

●

●
●
●●

●●

banana covtype cujo

german image ringnorm

splice twonorm waveform

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Step

N
um

be
r

of
 C

on
fig

ur
at

io
ns

Method

KLR

SVM

●●● ●●●
●●●● ● ●●●●●● ●●●●● ●

● ● ●●●● ● ●●●●●●● ●●●●●●●●●●● ●●●●

● ●● ●

●
●
●
●●●●●

●●

●
●

●
●

●●
●

● ●

●●
●●
●
●

●
●●
●
● ●

●● ●
●●●●● ●●● ●

●●
●
●●●
●

● ● ●

● ●
●
●●●

●
●
●●●●●●●● ●

●
●●●
●
● ●●●●●●● ●●●● ●●

bank blocks bumps

doppler heavisine kin

pumadyn

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10
Step

N
um

be
r

of
 C

on
fig

ur
at

io
ns

Method

KRR

SVR

Fig. 3.16: Remaining configurations after each step for the benchmark data sets.

79

3. Detection

sponding methods. In terms of speed gain we see a much more diverse and varying
picture. Overall, the speed improvements for KLR and KRR are higher than for
SVM and SVR and reach up to 120 times compared to normal cross-validation.

Regression tasks in general seem to be solved faster than classification tasks,
which can clearly be explained when we look at the traces in Figure 3.16: For
classification tasks the number of kept configurations is generally much higher than
for the regression tasks. Moreover we can observe different classes of difficulty for
the learning tasks: The german data set seems to be much more difficult than the
ringnorm data [see Braun et al., 2008] which is also reflected in the difference and
speed improvement seen in the previous figure. The CVST method shows an overall
good behavior on the cujo data: While the difference in MSE is practically zero,
the speed improvements range between roughly 60 times faster for KLR and 15
times faster for the SVM showing the applicability of our method for this security
problem.

In summary, the evaluation of the benchmark data sets shows that the CVST
algorithm gives a huge speed improvement compared to the normal cross-validation.
While we see some non-optimal choices of configurations, the total impact on the
error is never exceptionally high. We have to keep in mind that we have chosen the
parameters of our CVST algorithm to give an impression of the maximal attainable
speed-up: more conservative setting would trade computational time for lowering
the impact on the test error.

3.5 Discussion and Related Work

Sequential testing has been used extensively in the machine learning context. Sec-
tion 3.5.1 summarizes the work related to the CVST algorithm. Section 3.5.2 dis-
cusses a variant of the sequential test and evaluates its performance for the CVST
algorithm. It is shown that this so-called closed sequential test lacks essential
properties of the open variant of Wald used in the CVST algorithm, which further
underlines the optimality of the open test of Wald for the learning on increasing
subsets of data.

3.5.1 Sequential Testing in Machine Learning

Using statistical tests and the sequential analysis framework in order to speed up
learning has been the topic of several lines of research. However, the existing body
of work mostly focuses on reducing the number of test evaluations, while we focus
on the overall process of eliminating candidates themselves. To the best of our
knowledge, this is a new concept and can apparently be combined with the already
available racing techniques to further reduce the total calculation time.

Maron and Moore [1994, 1997] introduce the so-called Hoeffding Races which
are based on the non-parametric Hoeffding bound for the mean of the test error. At
each step of the algorithm a new test point is evaluated by all remaining models and
the confidence intervals of the test errors are updated accordingly. Models whose
confidence interval of the test error lies outside of at least one interval of a better
performing model are dropped. Chien et al. [1995, 1999] devise a similar range of

80

3.5. Discussion and Related Work

algorithms using concepts of PAC learning and game theory: different hypotheses
are ordered by their expected utility according to the test data the algorithm has
seen so far. As for Hoeffding Races, the emphasis in this approach lies on reducing
the number of evaluations.

This concept of racing is further extended by Domingos and Hulten [2001]: By
introducing an upper bound for the learner’s loss as a function of the examples,
the procedure allows for an early stopping of the learning process, if the loss is
nearly as optimal as for infinite data. Birattari et al. [2002] apply racing in the
domain of evolutionary algorithms and extend the framework by using the Fried-
man test to filter out non-promising configurations. While Bradley and Schapire
[2008] use similar concepts in the context of boosting (FilterBoost), Mnih et al.
[2008] introduce the empirical Bernstein Bounds to extend both the FilterBoost
framework and the racing algorithms. In both cases the bounds are used to es-
timate the error within a specific ε region with a given probability. Pelossof and
Jones [2009] use the concept of sequential testing to speed up the boosting process
by controlling the number of features which are evaluated for each sample. In a
similar manner this approach is used in Pelossof and Ying [2010] to increase the
speed of the evaluation of the perceptron and in Pelossof and Ying [2011] to speed
up the Pegasos algorithm. Stanski [2012] and Stanski and Hellwich [2012] use a
partial leave-one-out evaluation of model performance to get an estimate of the
overall model performance, which then is used to pick the best model with highest
probability. These racing concepts are applied in a wide variety of domains like re-
inforcement learning [Heidrich-Meisner and Igel, 2009] and timetabling [Birattari,
2009] showing the relevance and pratical impact of the topic.

Recently, Bayesian optimization has been applied to the problem of hyper-
parameter optimization of machine learning algorithms. Bergstra et al. [2011] use
the sequential model-based global optimization framework (SMBO) and implement
the loss function of an algorithm via hierarchical Gaussian processes. Given the
previously observed history of performances, a candidate configuration is selected
which minimizes this historical surrogate loss function. Applied to the problem
of training deep belief networks this approach shows superior performance over
random search strategies. Snoek et al. [2012] extend this approach by including
timing information for each potential model, i.e. the cost of learning a model and
optimizing the expected improvement per seconds leads to a global optimization
in terms of wall-clock time. Thornton et al. [2012] apply the SMBO framework in
the context of the WEKA machine learning toolbox: the so-called Auto-WEKA
procedure does not only find the optimal parameter for a specific learning problem
but also searches for the most suitable learning algorithm. Like the racing concepts,
these Bayesian optimization approaches are orthogonal to the CVST approach and
could be combined to speed up each step of the CVST loop.

On first sight, the multi-armed bandit problem [Berry and Fristedt, 1985, Cesa-
Bianchi and Lugosi, 2006] also seems to be related to the problem here in another
way: In the multi-armed bandit problem, a number of distributions are given
and the task is to identify the distribution with the largest mean from a chosen
sequence of samples from the individual distributions. In each round, the agent
chooses one distribution to sample from and typically has to find some balance

81

3. Detection

between exploring the different distributions, rejecting distributions which do not
seem promising and focusing on a few candidates to get more accurate samples.

This looks similar to our setting where we also wish to identify promising can-
didates and reject underperforming configurations early on in the process, but the
main difference is that the multi-armed bandit setting assumes that the distribu-
tions are fixed whereas we specifically have to deal with distributions which change
as the sample size increases. This leads to the introduction of a safety zone, among
other things. Therefore, the multi-armed bandit setting is not applicable across
different sample sizes. On the other hand, the multi-armed bandit approach is a
possible extension to speed up the computation within a fixed training size, either
in testing similar to the Hoeffding races already mentioned above, or to eliminate
the computation of individual folds in the cross-validation procedure for underper-
forming configurations.

3.5.2 Open versus Closed Sequential Testing

As already introduced in Section 3.2.2 the sequential testing was pioneered by Wald
[1947]; the test monitors a likelihood ratio of a sequence of i.i.d. Bernoulli variables
B1, B2, . . . :

` “
n
ź

k“1

fpbk, π1q{

n
ź

k“1

fpbk, π0q given Hh : Bi „ πh, h P t0, 1u.

Hypothesis H1 is accepted if ` ě A and contrary H0 is accepted if ` ď B.
If neither of these conditions apply, the procedure cannot accept either of the
two hypotheses and needs more data. A and B are chosen such that the error
probability of the two decisions does not exceed αl and βl respectively. In Wald
and Wolfowitz [1948] it is proven that the open sequential probability ratio test of
Wald is optimal in the sense, that compared to all tests with the same power it
requires on average fewest observations for a decision. The testing scheme of Wald
is called open since the procedure could potentially go on forever, as long as ` does
not leave the pA,Bq-tunnel.

The open design of Wald’s procedure led to a development of different sequential
tests, where the number of observations is fixed beforehand [see Armitage, 1960,
Spicer, 1962, Alling, 1966, McPherson and Armitage, 1971]. For instance in clinical
studies it might be impossible or ethically prohibitive to use a test which potentially
could go on forever. Unfortunately, none of these so-called closed tests exhibit an
optimality criterion, therefore we choose one which at least in simulation studies
showed the best behavior in terms of average sample number statistics: The method
of Spicer [1962] is based on a gambler’s ruin scenario in which both players have
a fixed fortune and decide to play for n games. If fpn, π, Fa, Fbq is the probability
that a player with fortune Fa and stake b will ruin his opponent with fortune Fb

82

3.5. Discussion and Related Work

in exactly n games, then the following recurrence holds:

fpn, π, Fa, Fbq “

$

’

’

’

’

&

’

’

’

’

%

0 if Fa ă 0_ pn “ 0^ Fb ą 0q,

1 if n “ 0^ Fa ą 0^ Fb ď 0,

πfpn´ 1, π, Fa ` 1, Fb ´ bq

`p1´ πqfpn´ 1, π, Fa ´ b, Fb ` bq otherwise.

In each step, the player can either win a game with probability π and win 1 from
his opponent or lose the stake b to the other player. Now, given n “ x` y games
of which player A has won y and player B has won x, the game will stop if either
of the following conditions hold:

y ´ bx “ ´Fa ô y “
b

1` b
n´

Fa
1` b

or y ´ bx “ Fb ô y “
b

1` b
n´

Fb
1` b

.

This formulation casts the gambler’s ruin problem into a Wald-like scheme, where
we just observe the cumulative wins of player A and check whether we reached the
lower or upper line. If we now choose Fa and Fb such that fpn, 0.5, Fa, Fbq ď αl, we
construct a test which allows us to check whether a given configuration performs
worse than π “ 0.5 (i.e. crosses the lower line) and can therefore be flagged as an
overall loser with controlled error probability of αl (see Alling [1966]). For more
details on the closed design of Spicer please consult Spicer [1962].

Since simulation studies show that the closed variants of the sequential testing
exhibit low average sample number statistics, we first have a look at the runtime
performance of the CVST algorithm equipped with either the open or the closed
sequential test. The most influential parameter in terms of runtime is the S param-
eter. In principle, a larger number of steps leads to more robust estimates, but also
to an increase of computation time. We study the effect of different choices of this
parameter in a simulation. For the sake of simplicity we assume that the binary top
or flop scheme consists of independent Bernoulli variables with πwinner P r0.9, 1.0s
and πloser P r0.0, 0.1s. We test both the open and the closed sequential test and
compare the relative speed-up of the CVST algorithm compared to a full 10-fold
cross-validation in case the learner is cubic.

Figure 3.17 shows the resulting simulated runtimes for different settings. The
overall speed-up is much higher for the closed sequential test indicating a more
aggressive behavior compared to the more conservative open alternative. Both
tests show their highest increase in the range of 10 to 20 steps with a rapid decline
towards the higher step numbers. So in terms of speed the closed sequential test
definitely beats the more conservative open test.

Figure 3.18 reveals that the speed gain comes at a price: Apart from having no
control over the safety zone, the number of falsely dropped configurations is much
higher than for the open sequential test. While having a definitive advantage over
the open test in terms of speed, the false negative rate of the closed test renders it
useless for the CVST algorithm.

83

3. Detection

Steps

R
el

at
iv

e
S

pe
ed

−
up

1

10

20

40

80

160

320

Open

20 40 60 80 100 120 140

Closed

20 40 60 80 100 120 140

Experiment

easy

medium

hard

Fig. 3.17: Relative speed gain of fast cross-validation compared to full cross-validation.
We assume that training time is cubic in the number of samples. Shown are simu-
lated runtimes for 10-fold cross-validation on different problem classes by different
loser/winner ratios (easy: 3:1; medium: 1:1, hard: 1:3) over 200 resamples.

3.6 Outlook and Conclusion

We presented a method to speed up the cross-validation procedure by starting at
subsets of the full training set size, identifying clearly underperforming parameter
configurations early on and focus on the most promising candidates for the larger
subset sizes. We have discussed that taking subsets of the data set has theoretical
advantages when compared to other heuristics like local search on the parameter
set because the effects on the test errors are systematic and can be understood
statistically. On the one hand, we showed that the optimal configurations converge
to the true ones as sample sizes tend to infinity, but we also discussed in a concrete
setting how the different behaviors of estimation error and approximation error
lead to much faster convergence practically. These insights led to the introduction
of a safety zone through sequential testing, which ensures that underperforming
configurations are not removed prematurely when the minima are not converged
yet. In experiments we showed that our procedure leads to a speed-up of up to
120 times compared to the full cross-validation without a significant increase in
prediction error.

It will be interesting to combine this method with other procedures like the
Hoeffding races or algorithms for multi-armed bandit problems. Furthermore, get-
ting accurate convergence bounds even for finite sample size settings is another
topic for future research. At the moment, the CVST algorithm has as a precon-
dition that the optimal parameter of the learning method is independent of the
training set size. While most of the standard machine learning algorithms adhere
to this precondition there are other methods like k-nearest neighbor which exhibit
a connection between the optimal parameter and the training set size. It would be
a valuable extension of the CVST to incorporate this kind of knowledge into the
algorithm. This would lower the preconditions on the learner and make the fast
cross-validation procedure available to more learning methods.

84

3.6. Outlook and Conclusion

S=10 S=20

0.0

0.2

0.4

0.6

0.8

1.0

● ●

● ●
● ● ● ● ●

● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

2 4 6 8 5 10 15
Change Point

Fa
ls

e
N

eg
at

iv
e

R
at

e π
● 0.1

0.2

0.3

0.4

0.5

S=10 S=20

0.0

0.2

0.4

0.6

0.8

1.0

● ●

● ●

●

● ● ● ●

● ● ● ● ● ● ●

● ●

● ●

● ●

●
● ● ● ● ●

2 4 6 8 5 10 15
Change Point

Fa
ls

e
N

eg
at

iv
e

R
at

e π
● 0.1

0.2

0.3

0.4

0.5

Fig. 3.18: False negatives generated with the closed (top) and open (bottom) sequen-
tial test for non-stationary configurations, i.e., at the given change point the Bernoulli
variable changes its πbefore from the indicated value to 1.0.

From a structural point of view we can see that the problem of selecting the
optimal learner for a given problem can be deconstructed and decoupled into several
layers: First, we define the problem domain of model complexity to be solved via
the expected risk of a learner. Exploiting the convergence of the risk on subsets
we are able to represent the performance of a learner in a binary fashion whether
it belongs to the top performers of a round or not. By observing this property
for increasing subset sizes we can give statistically bounded guarantees on the
overall performance of a model via sequential testing and even use robust testing
for early stopping of the whole procedure in case no more changes can be expected.
This layering of probabilistic preprocessing and modeling allows for a step-by-step
construction process which combined in one tool-chain solves the problem of model
selection. This toolbox is publicly available as an open source CRAN package (see R
Core Team [2012]) named CVST. Apart from the CVST algorithm itself it contains
all the learning algorithms used in this chapter readily packaged for the use in
the fast cross-validation framework. Thus, CVST can now easily be used as an
additional encapsulated layer in other learning tasks to facilitate and speed up the
model selection process.

85

Chapter 4

Response

Response to a security incident requires both an accurate analysis of the underlying
data and the detection of the incident itself. In network security two kinds of
models have been established: The negative security model defines via a set of
rules, which kind of traffic will not be allowed whereas the positive security model
fixes the allowed traffic. Therefore, in case of the negative security model an
intrusion detection system issues an alarm, if one of the rules matches incoming
traffic and in case of the positive security model the alarm is issued, if the observed
traffic deviates from the allowed traffic.

Apart from choosing the type of security model, a network administrator also
has to choose a suitable point for deployment in the network infrastructure. Fig-
ure 4.1 shows a simple network infrastructure with an internal network, where all
clients of the organization reside, and a so-called demilitarized zone (DMZ) where
all services are set up, which are accessible from the outside of the organization.
The entry to this DMZ is sealed off by a firewall which acts as the central point
of entry and departure of network traffic both from the internal network and the
DMZ to the outside world. The DMZ acts as another security zone to protect the
clients of the organization: the services inside the DMZ have very restricted access
to the internal network; thus, if one of these services gets compromised, the attack
will not be able to spread inside the internal network.

To further harden specific services one can also deploy application firewalls like
the reverse proxy shown in Figure 4.1: this service acts like the protected web
server, i.e. all requests to the web server will be first processed by the reverse
proxy. This so-called web application firewall (WAF) inspects incoming requests
on the application level, since the WAF knows that requests to the web server
are encoded in the hypertext transfer protocol (HTTP) and detection of malicious
behavior can take place on a fine-grained level.

While an intrusion detection system is merely reporting suspicious network
traffic, an intrusion prevention system (IPS) reacts in real time to suspicious ac-
tivities by either blocking the traffic or replacing parts of the request. Prominent
examples are the system Snort inline [Roesch, 1999] which can be deployed just
like the firewall in Figure 4.1 and the WAF ModSecurity which acts like the reverse
proxy in the figure. Both solutions work with rule-based detection engines which

87

4. Response

Web ServerFTP server

Internal Network

DMZ

Firewall

Reverse

Proxy

Fig. 4.1: In this network infrastructure the internal network is separated from the
so-called demilitarized zone (DMZ). The DMZ contains all servers which are accessible
from the outside and is secured by a firewall. The web server is further hardened by
an application firewall acting as a reverse proxy to the outside.

define a negative security model, i.e. unless there is not a rule inside the system
for a specific exploit, these systems are not able to protect the infrastructure or
service at hand.

Approaches based on these negative security models are prone to two major
drawbacks: First, they require extensive application and attack knowledge to main-
tain a reliable rule base. Furthermore, they are only capable of detecting known
attacks and leave a system wide open to the so-called zero-day attacks for which no
patterns are available. A not up-to-date rule base is sufficient for an attack to slip
in. Thus, focusing on a positive security model by learning a model of normality
helps to circumvent these problems.

In the field of probabilistic methods this problem directly maps to the domain
of unsupervised learning: Using structural features from Chapter 2 we can learn a
model of normality for instance by observing the distribution of the distance to the
centroid of the data observed for each specific token. For a new request we can check
for each token, whether the obtained distance to the previously calculated centroids
are in a statistically sound range according to the observed distributions. Since dif-

88

ferent tokens of web requests exhibit different behavior, this centroid model might
not fit all types of tokens; other approaches like Markov models or even simple
lookup tables can often be applied successfully. Given this probabilistic modeling
of the token structure we cannot only detect aberrations to normal behavior but
we can exploit our models to alter this potentially suspicious request. Using in-
sights derived by the token models we can apply “minimally invasive surgery” to
the request and fix just the parts which are suspicious.

In this chapter, we present one instance of such a method which attains the
same level of response flexibility as a WAF, namely, the ability not only to drop but
also to heal malicious requests, without reliance on known patterns. As already
discussed, our approach is based on anomaly detection carried out at the granu-
larity of HTTP request tokens. In contrast to previous applications of anomaly
detection to web attack detection, e.g. Kruegel and Vigna [2003], Valeur et al.
[2006], Ingham et al. [2007], Cova et al. [2007], Düssel et al. [2008], Song et al.
[2009], our method not only detects, but reacts to such attacks.

We have developed a prototype of a reverse proxy called TokDoc which im-
plements the idea of intelligent, token-based substitution coupled with anomaly
detection. In our prototype, an HTTP request is parsed into token-value pairs
and then compared to learned profiles of normal content of specific tokens. Should
some token deviate from a typical profile, it is replaced with an appropriate benign
value using token-specific heuristics.

The proposed request healing technique is simple and effective, hence it can ef-
ficiently be implemented for deployment in high-speed networks. The main advan-
tage of this so-called mangling of requests over simple dropping of requests is that
decisions are made in a precise context of specific tokens instead of full requests.
This greatly improves detection accuracy, as verified by our experimental compar-
ison with detection at a request level, and makes decisions more fault-tolerant,
since the replacement of content with a suitable alternative in certain cases does
not harm even if it has been wrongly classified as malicious.

Our system is highly customizable, especially if for some reasons automatic
mangling may not be desirable (e.g. for privacy reasons, one may not want to
automatically replace user name or password field values). However, in most cases,
manual configuration is not necessary, and automatic setup procedures are provided
for TokDoc’s decision engine. A further advantage of TokDoc is its ability to learn
from contaminated data, which enables its deployment with minimal manual effort.

In summary, the contributions of this chapter are:

1. We propose a web application firewall, which decides based on local, anomaly-
based models, which parts of a request are anomalous and need to be replaced
by benign parts observed in the past.

2. We employ a data-driven setup procedure, which automatically assigns data
types to extracted tokens both by structural and statistical features.

3. No “clean”, attack-free data set is needed, since both the learning models
as well as the tests are robust against “contaminated” data. No additional
attack data set is needed for the learning and setup procedure.

89

4. Response

The remaining part of this chapter is organized as follows: In Section 4.1 we
introduce a methodology for a self-healing web application firewall and present
our prototype TokDoc. We evaluate its detection performance and runtime using
real HTTP traffic in Section 4.2. Related work is discussed in Section 4.3 and
conclusions are given in Section 4.4.

4.1 TokDoc – The Token Doctor

The automatic healing of malicious web requests entails the following two essential
tasks: the identification of malicious content and the construction of the replace-
ment content. Unlike regular intrusion detection in which the problem is to decide
whether a request is malicious or not, the identification problem is more complex,
since one needs to determine not only the presence of malicious content but also
its location which is a prerequisite for replacement.

The identification problem can be addressed by making decisions in a refined
context of specific parameters of an HTTP request. Such context-dependent de-
tection has been previously used in Kruegel and Vigna [2003] for URI parameters
of GET requests and in Düssel et al. [2008] for full HTTP request contents. Tok-
Doc follows roughly the same idea: the requests are parsed into token-value pairs1,
but, instead of combining the scores of token-based models to make decisions at a
request level, decisions are made at a token level. Once the content for a token is
deemed anomalous, an appropriate replacement is sought.

The diversity of web application traffic content essentially rules out the possi-
bility that a “one-size-fits-all” model of traffic can be learned. Hence we attempt to
provide the right anomaly detection algorithm and the appropriate healing action
for particular tokens. As a result, the design of TokDoc comprises the following
three orthogonal components:

1. Token Types. Based on the analysis of real HTTP traffic, we postulate four
token types that describe characteristic distributions of token contents.

2. Anomaly Detectors. Since malicious content can manifest itself in various fea-
tures, e.g., unusual length or previously unseen attributes, different anomaly
detection algorithms can be used to capture attacks. TokDoc employs a set
of anomaly detectors which are automatically coupled with particular tokens
in the setup procedure presented in Section 4.1.4.

3. Healing Actions. The particular transformation of a token content is denoted
as a “healing action”. We propose a set of four healing actions that, similar
to detectors, depend on the particular token type and are also configurable
during the setup procedure.

From the operational point of view, TokDoc can be characterized as a reverse
proxy similar in function to a traffic normalizer [Handley et al., 2001]: It inter-
cepts HTTP client requests and, after parsing according to the HTTP protocol

1Invalid requests are discarded at this point.

90

4.1. TokDoc – The Token Doctor

HTTP Parser Mangle

Action

GET /index.php?cat=%2527+UNION+SELECT+user_pass+FROM+wp_users/* HTTP/1.1

Host: www.foobar.com

User-Agent: Mozilla/4.0

Accept: */*

GET /index.php?cat=27 HTTP/1.1

Host: www.foobar.com

User-Agent: Mozilla/4.0

Accept: */*

Reverse Proxy

path: /index.php

cat: %27 UNION SEL...

host: www.foobar.com

user-agent: Mozilla/4.0

accept: */*

Detector

Fig. 4.2: Architecture of TokDoc: The system acts as a reverse proxy, which intercepts
each client request. After examination and potential alteration the request is delivered
to the production system.

specification and potentially modifying the request content, relays traffic to actual
production systems. In contrast to the system proposed by Valeur et al. [2006],
TokDoc does not require the target production servers to run at different security
levels. The security-related decisions are encapsulated in the proxy itself, which
significantly simplifies the design of the network environment to be protected.

The architecture of TokDoc is shown in Figure 4.2. In the example decision
presented in this figure, all tokens but cat are deemed normal and remain unal-
tered, whereas the anomalous value of cat is flagged for healing. In this example,
the value is automatically replaced by previously seen benign data with highest
similarity; i.e., the string corresponding to an SQL injection attack is replaced
with the benign string 27 due to the occurrence of this string in the attack.

In the following sections we provide a detailed description of the three orthogo-
nal components of TokDoc followed by the presentation of a setup procedure that
ties these three components together.

4.1.1 Token Types

Every request received by TokDoc is parsed into syntactical parts according to the
HTTP specification and stored as token-value pairs. We treat the URI path, all
parameters of GET and POST requests and all header fields as separate tokens
followed by respective values. For example, the request in Figure 4.2 is parsed into
five tokens corresponding to parameters and headers as denoted inside the reverse
proxy. Note, that all request parameters with different names will be presented by
different tokens.

91

4. Response

The distribution of token content is highly diverse. Some tokens, e.g., host,
contain only a small number of possible values, sometimes even a constant value.
Other tokens such as query and range parameters, contain a wide variety of values,
which may even be generated automatically. In order to systematically handle such
diversity we classify tokens into four token types according to typical properties of
information transmitted in HTTP requests:

• Constants. In the simplest case the values of a token take the same value,
for example the header field host when monitoring a particular web host.

• Enumerations. A second type of tokens carries data that takes on only a
small set of values dependent either on the HTTP protocol itself or on the
web application. An example of such token is the accept-language header.

• Machine input. The third type of tokens comprises machine-generated data,
such as session numbers, identifiers and cookies.

• Human input. The most complex token type is induced by human input,
such as free-text fields, query strings, comments and names. The entered
data does not exhibit any semantical structure except for being generated by
a natural language.

The characteristic features of different token types have to be taken into account
in the choice of anomaly detection algorithms and healing actions.

4.1.2 Anomaly Detectors

Anomaly detection methods have been widely studied for protection of web services
[Kruegel and Vigna, 2003, Valeur et al., 2006, Ingham et al., 2007, Cova et al.,
2007, Düssel et al., 2008, Song et al., 2009]. However, all previous approaches
flag anomalies for full HTTP requests and hence cannot be directly applied for
triggering fine-grained actions on individual tokens. In TokDoc we deploy per-
token anomaly detection algorithms as proposed by Kruegel and Vigna [2003],
however, decision-making remains at the token level.

The choice of an anomaly detection method depends on the token type. For
constant and enumeration tokens, a straightforward occurrence check referred to
as the LIST detector is a natural choice: if a given value has not been seen in the
training data it is deemed anomalous. For the remaining two token types we deploy
three different detectors as described below. The decision what detector should be
applied to a specific token is automatically made during the setup process presented
in Section 4.1.4.

n-gram Centroid Anomaly Detector (NCAD)

n-gram models have been widely used in security applications [Forrest et al., 1996,
Rieck and Laskov, 2006, Wang et al., 2006]. In TokDoc, we deploy the embedding
technique proposed by Rieck and Laskov [2006], which provides an efficient way
for n-gram analysis.

92

4.1. TokDoc – The Token Doctor

Given the set of all possible n-grams over byte sequences W “ t0, . . . , 255un, we
define the embedding function φ : W ÞÑ R|W | for a token value s as in Section 2.1.2:

φpsq :“ pφwpsqqwPW with φwpsq :“ occwpsq

where occwpsq returns 1 if the n-gram w is contained in s and 0 otherwise. The
resulting vector φpsq is normalized to one to eliminate length-dependence. The
vector space induced by the embedding of n-grams grows exponentially with n,
however, its sparseness is linear in the length of sequences. This allows one to
efficiently construct and compare embedding vectors φpsq for byte sequences as
detailed in Rieck and Laskov [2008].

With the embedding function at hand, the Euclidean distance between embed-
ding vectors can be defined as follows:

deps, tq “ }φpsq ´ φptq}2 “

d

ÿ

wPW

|φwpsq ´ φwptq|2.

Using this distance, the detection can be performed by computing the distance
from a previously learned model µ of normal data:

scoreNCADpsq “

#

normal, if depµ, sq ď dm

anomaly, otherwise.

The vector µ is constructed from the training data T “ tt1, . . . , tnu as an arithmetic
mean of the respective embedding vectors µ “ 1

n

řn
i“1 φpti). The threshold dm is

determined on an independent validation set as described in Section 4.1.4.

Markov Chain Anomaly Detector (MCAD)

Markov chains have previously been used in several security applications [Kruegel
and Vigna, 2003, Valeur et al., 2006, Estévez-Tapiador et al., 2004, Song et al.,
2009]. We use the 256 possible byte values as states of a Markov chain with 256
possible state transitions each (see Appendix A.3 for details). State transition
probabilities can be learned by recording transition frequencies between bytes bi
and bj in the training data (including an extra start state). The overall size of
the transition table is 2562 ` 256, which is not prohibitively large. Having learned
the transition probabilities, we can estimate the probability of a token value sn1 of
length n based on the learned Markov chain:

PSn1 ps
n
1 q “ PS1ps1q

n´1
ź

i“1

PSt`1|Stpsi`1|siq

where si corresponds to the i-th byte in the token value sn1 . We do not use length
normalization, for instance by applying the geometric mean, because we want a
detector which takes both content and length into account. Equipped with the
token-specific Markov chain and a threshold pm the MCAD for a new value sn1 is
defined as follows:

scoreMCADps
n
1 q “

#

normal, if PSn1 ps
n
1 q ě pm

anomaly, otherwise.

93

4. Response

Length Anomaly Detector (LAD)

Often it is the length of a token value that is characteristic for an attack. For
example, the majority of buffer overflow attacks exhibits long token values. This
property is addressed by LAD. This detector is a fallback solution for tokens, where
an insufficient amount of data renders the learning task involved in training the
NCAD and MCAD impossible. Therefore we have to find a solution that can cope
with a scarce data situation. Modern robust statistics provides us with powerful
tools, which are specialized to deal with noisy data and even small sample sizes.
Especially for small sample sizes estimates of the mean and standard deviation as
used in the Chebyshev’s inequality for instance in Kruegel and Vigna [2003] can
be extremely outlier-dependent and a test statistic based on these biased estimates
can be too loose.

Hence, instead of using a test based on Chebyshev’s inequality, we decide to
employ a robust statistic as described in Wilcox [1997]. Given a predefined signif-
icance level αLAD we estimate the 1 ´ αLAD quantile of the length distribution of
the train and validation data L, namely L̂1´αLAD . Now we construct a confidence
interval for L1´αLAD by first calculating the bootstrap estimate of the standard
error of L̂1´αLAD , namely σ̂, and determining the parameter c, so that the interval

pL̂1´αLAD ´ cσ̂, L̂1´αLAD ` cσ̂q

has probability coverage of 1´αLAD. Finally we choose the upper bound of the con-
fidence interval as a threshold for the LAD detector to allow for future variability.
This results in the following decision rule:

scoreLADpsq “

#

normal, if lenpsq ď L̂1´αLAD ` cσ̂

anomaly, otherwise.

4.1.3 Healing Actions

The fine-grained detection at the token level allows us to devise similarly fine-
grained healing actions. Hence our automatic response mechanisms can be less
intrusive and more accurate than actions taken at the request level. In particular,
TokDoc is equipped with the following healing actions:

• Dropping of tokens. The most conservative response to the spotting of an
anomalous token value is to remove the token from a request. Notice that
this is still a much more benign action than dropping the request itself. We
use this action for each token which has an LAD detector.

• Preventive encoding. An alternative but still conservative strategy is to en-
code the anomalous value using HTML entities. This approach makes com-
mon web attacks based on cross-site scripting and SQL injection fail, as con-
trol and punctuation characters are escaped. This action provides almost no
damage to benign requests, as many web applications can resolve additional
encoding of content.

94

4.1. TokDoc – The Token Doctor

Struct. |X| ≤ 50 ∧
Stat. — LAD

Struct. |bins(X)| ≤ 10 ∧
Stat. argmax

pfalse

(χ2(C, pfalse) > αLIST) ≤ α LIST

Struct. median([len(x) | x ∈ X]) ≥ 5 ∧
Stat. P (||X − μ|| ≥ dmax) = 0 NCAD

MCAD

no

no

yes

yes

yes

no

Fig. 4.3: Automatic testing procedure for the setup of TokDoc. After a service-specific
split of the training data the testing procedure decides for each token, which detector
should be used. By exploiting both structural and statistical features this automatic
process is totally data-driven. X denotes the training data for a specific token under
test.

• Replacement with most frequent value. For constant and enumeration token
types, a natural healing action is to replace the value with the most frequent
normal value of the token. This is the natural action assigned to a token
having the LIST detector.

• Replacement with nearest value. The most involved healing action is to re-
place an anomalous value with its nearest-neighbor from the training set.
Such replacement is possible due to the embedding of values in a metric
space introduced in Section 4.1.2. This is the default action for both the
MCAD and NCAD. Note that as a side-effect, this action can also correct
typos in user-input fields.

Clearly, the four healing actions above are tightly coupled with the particular
data types of the considered tokens. The precise assignment of healing actions to
token types is presented in Section 4.1.4, which also allows the administrator to
tighten the proposed default actions for special tokens in need of extra protection
like password files and cookies.

4.1.4 Setup of TokDoc

Since the main components of TokDoc are based on learning methods, its setup is
dependent on the availability of an initial corpus of normal data for training and

95

4. Response

validation. Initially this sufficiently large pool of client requests should be separated
according to services (e.g., by virtual hosts and/or different web services) to allow
for service-specific learning of models. This data is parsed and used to generate
token-specific data pools used in the following phases. The amount of data should
be chosen according to traffic volume so that the widest possible range of normal
behavior is covered. Note, that the service-specific splitting process of the data
could be further improved by the PRISMA framework introduced in Chapter 2 to
generate even more focused, state-specific TokDoc instances.

The testing framework depicted in Figure 4.3 determines for each token an
automatic and data-driven detector assignment by exploiting both structural and
statistical features. Using robust, outlier-resistant statistics, this procedure ensures
meaningful decisions even for “dirty”, attack-tainted data sets. The collected data
is split into two equally sized parts: The training pool is used to learn a model for
each token, for which a threshold is estimated using the validation data set. After
the semi-automatic assignment of actions and outlier adjustment of thresholds for
each token, the TokDoc system is ready for deployment. While the model learning
has already been discussed in Section 4.1.2 we now describe in detail the other
parts of the setup process.

The data-driven detector assignment is depicted in Figure 4.3. Each step con-
sists of a structural and a statistical test which is carried out for each token in the
original data set. Starting with a size test, the procedure assigns the simple LAD
detector, if the training data of the currently tested token contains 50 or less sam-
ples. The rationale here is that all other detectors need a reasonable amount of data
for the estimation of their models. If more than 50 samples are available, the pro-
cedure checks, whether the current token is an enumeration. If we observe less than
10 unique values in a token, the procedure tests for statistical evidence by exploit-
ing the well-known χ2-test. First we define the list C “ rd P train | d P validates,
which describes, whether each sample of the validation data set has been observed
in the training data set. Then we can define the function χ2pC, pfalseq, which returns
the p-value of the χ2-test, whether C could be generated by a binomial variable,
which generates “false” with probability pfalse and “true” with probability 1´pfalse.
Now we can determine the maximal pfalse, that barely supports the acceptance of
the hypothesis, that C is generated by pfalsewith a given significance level αLIST:

pworst-case “ argmax
pfalse

pχ2pC, pfalseq ą αLISTq

The value of pworst-case gives an impression of the possible non-matching occurrences
for this token, that might occur in the future or similarly can be interpreted as the
upper bound of the confidence interval of the empirical observed pfalse. Thus we
can use this value for thresholding the expected false-positives per token for the
LIST data type.

When deciding between NCAD and MCAD, the test procedure first looks at
a structural feature, namely the median length of the token. Since the NCAD
detector is based on 2-grams, the detector needs at least two characters for calcu-
lating a meaningful mean and distances. If the token passes the structural test,
the test procedure focuses on a statistical property: Observe that, given the cen-

96

4.2. Evaluation

troid µ, the largest distance from it is bounded by dmax “
a

}µ}2 ` 1 since the
data is normalized to a length of one. By using a kernel density estimator on
the validation data (see for instance Silverman [1986] for details) we can measure
and bound the probability that the maximal distance is ever attained, formally
P p||X ´ µ|| ě dmaxq “ 0.

Both the NCAD and the MCAD need a threshold for operation. Since the mod-
els are focused on a specific token, we can choose a relatively relaxed thresholding
policy. We propose to use the maximal distance for NCAD and minimal probability
for MCAD, after a semi-automatic outlier adjustment: All values of the validation
data set are ordered by the according output of the detector (descending distances
to the mean for NCAD and ascending probabilities for MCAD) and the admin-
istrator decides, whether the extremal value is a real, user-generated sample or a
malicious token value. For example the sorted probabilities in Figure 4.4 clearly
show, that the extremal three values are induced by malicious input and therefore
the administrator adjusts the threshold to the first user-generated request. During
this procedure the administrator additionally can check the quality of the assigned
detector and see, whether the chosen model fits the actual data.

In addition he can address privacy and security issues by refining the assigned
actions. The administrator can manually adjust, whether a token should be healed
or dropped completely. For instance, privacy-related data such as cookies or pass-
words must not be replaced by its nearest counterpart but instead dropped com-
pletely to prevent potential abuse like session or password hijacking.

If the system produces false positives after deployment, these can be tracked
down to the token, which caused the false alarm. Thus, the administrator can
focus on a specific token and can reconfigure the system according to the incident.
In case the website is restructured or new services are deployed, the data model
may have to be adjusted accordingly, potentially leading to a retraining of some
token models.

4.2 Evaluation

Evaluation of an intrusion prevention system is a multi-faceted task. Since the ef-
fectiveness of response actions inherently depend on the accuracy of malicious con-
tent identification, we first evaluate the accuracy of TokDoc detectors and compare
its overall performance to other state-of-the-art methods. To check for real-time
readiness the runtime of TokDoc is assessed and compared to other proxies.

4.2.1 Detection Performance

For the evaluation of detection performance we have collected network traces at
two different Internet domains. The first data set (FIRST08) comprises 60 days
of traffic with 1,452,122 HTTP requests recorded at the web server of a research
institute in 2008. The server provides static content as well as dynamic pages using
the content management system OpenWorx. The second data set (BLOG09) covers
33 days of traffic with 1,181,941 requests which have been obtained from a domain
running various weblogs in 2009. All blogs run on the popular publishing platform

97

4. Response

Fig. 4.4: The TokDoc setup console. After the automatic detector assignment the
administrator should check the calculated thresholds for outliers.

WordPress. For the evaluation, both data sets are split into three equally sized
parts for training, validation and testing. Due to the different web applications,
the amount of monitored tokens as well as the assignment of anomaly detectors
differs between the data sets. The TokDoc configuration used for both data sets is
presented in Table 4.1.

In addition to regular network traffic, we have collected network attacks based
on 35 exploits obtained from the Metasploit framework as well as from common
security archives, such as milw0rm, Packet Storm or Bugtraq. Each attack has been
executed in a virtual environment and thoroughly adapted to the characteristics
of the two data sets. A detailed listing of the considered attacks and exploits is
given in Table 4.2. As a result of variations during recording, e.g., usage of different
shellcode encoders or SQL statements, the attack pool contains 89 attack instances
for FIRST08 and 97 attacks for BLOG09.

Ensemble of Learners and Request Semantics

First of all we want to check, whether all the different detector models are really
necessary. For this, we construct special TokDoc instances, which have just the
LAD detector instead of both the MCAD and NCAD (referred to as TDLAD), or
just the NCAD (i.e. all MCADs are replaced by NCADs, referred to as TDNCAD)

98

4.2. Evaluation

Detectors FIRST08

Category LIST LAD MCAD NCAD Σ

Header 14 14 5 10 43
Parameter 9 3 4 — 16

Path — — 1 — 1

Σ 23 17 10 10 60
Detectors BLOG09

Category LIST LAD MCAD NCAD Σ

Header 22 77 15 17 131
Parameter 14 166 28 7 215

Path — — 1 — 1

Σ 36 243 44 24 347

Tab. 4.1: TokDoc configurations used in the experiments. The column category
summarizes the tokens into tokens originating from headers, parameters from queries
and the path token as introduced in Section 4.1.1.

or MCAD (i.e. all NCADs are replaced by MCADs, referred to as TDMCAD). We
evaluate each of these TokDoc instances on both the FIRST08 and BLOG09 data
set. Each rejected request is manually checked and labeled as false or true positive,
i.e., a rejected request which is originally from the normal traffic and turns out to
be a malicious request counts as attack in the normal traffic (ANT). In case of
doubt a request is replayed against the original server as follows: First we use the
unmodified request and save the reply of the server. This is compared to the reply
of the server when we send the request modified by TokDoc. If there is a difference,
we count this request as a false positive. In the complete replaying process we could
not observe any severe or drastic replies from the servers indicating malformed or
even malicious requests. This shows, that the inherent request semantic is not
harmed by the actions of TokDoc. The results are summarized in Table 4.3. The
first thing to notice is the overall low false-positive rate, which is a direct result of
the additional parsing and local decision making of TokDoc. A closer look reveals,
that both the TDLAD and TDNCAD suffer from high false-negative rates, while
the TDMCAD performs equally good on the FIRST08 data set but falls behind
TokDoc on the more involved BLOG09 data. The plain TokDoc with its diversity
of models is the only method, which performs nearly identical on both data sets
and is also capable of detecting the most true positives in the tainted BLOG09
data. This trend is further confirmed by Table 4.2: All presented detectors are
necessary to disarm the used attacks. Note, that the malicious parts of the attacks
are spread throughout different tokens rendering the TokDoc approach even more
valuable. Additionally, the healing actions employed in TokDoc save roughly 0.0001
of the data from being discarded as false positives on both the BLOG09 and the
FIRST08 data set. In summary the results show, that only the full variety of
models embodied in TokDoc leads to an overall good performance while keeping
the general request semantic intact.

99

4. Response

CVE / milworm Token Detector

Buffer overflow attacks

1999-0874 Path MCAD
2001-0241 Path MCAD
2001-0500 H (Protocol viol.) Parser
2002-0392 H (Protocol viol.) Parser
2003-0471 Param. User Normalizer
2003-1192 H (Protocol viol.) Parser
2004-1561 H (Protocol viol.) Parser
2004-1134 H (Protocol viol.) Parser
2005-4734 Param. url Normalizer
2006-1148 H (Protocol viol.) Parser
2006-0992 Accept-Language MCAD
2006-5216 Path MCAD
2006-5478first Host LIST
2006-5478blog Host NCAD

Code injection attacks

2005-0116 Param. configdir Normalizer
2005-0511 Param. template Normalizer
2005-1921 Body MCAD
2005-2847 Param. f Normalizer
2006-1551 Body MCAD
2007-0774 Path MCAD
php inject Param. z Normalizer

WordPress attacks

2004-1584 Body MCAD
2005-1810 Param. cat MCAD
2005-2612 Cookie MCAD
2007-1599 Param. redirect MCAD
7738milwOrm Param. thread Normalizer
2008-1982 Param. ss id Normalizer
6842milwOrm Param. id LAD
2008-5752 Param. book id Normalizer
2009-0968 Param. id LAD
2009-1030 Host NCAD

Miscellaneous attacks

httptunnel H (Protocol viol.) Parser
2004-1373 H (Protocol viol.) Parser
2007-1286 H (Protocol viol.) Parser
xss/sql injection Param. s MCAD

Tab. 4.2: Table of CVE numbers for HTTP exploits. Each attack is executed in
different variants. We have listed the tokens, in which the attack is located and its
detector. In case a token has never been seen before, TokDoc normalizes the request
by dropping this token.

100

4.2. Evaluation

Data Set Detector FP #ANT FN

FIRST08

TokDoc 0.00002 0 0.00000
TDLAD 0.00000 0 0.02247
TDMCAD 0.00001 0 0.00000
TDNCAD 0.00002 0 0.22472

BLOG09

TokDoc 0.00003 212 0.04124
TDLAD 0.00001 68 0.15464
TDMCAD 0.00009 186 0.04124
TDNCAD 0.00003 0 0.22680

Tab. 4.3: Detection performance of several instances of TokDoc (FP = false-positive
rate. #ANT = attacks found in normal traffic. FN = false-negative rate).

Data Set Detector FPTD FNTD

FIRST08
TokDoc 0.00002 0.00000
Markov Chain 0.02005 0.80899
Anagram 0.00004 0.16854

BLOG09
TokDoc 0.00003 0.04124
Markov Chain 0.16698 0.18557
Anagram 1.00000 0.39175

Tab. 4.4: Detection performance of TokDoc and payload-based anomaly detectors.
FPTD = false-positive rate of detector when calibrated to the true-positive rate of
TokDoc. FNTD = rate of missed regular attacks when detector is calibrated to the
false-positive rate of TokDoc.

Comparison to Other Detectors

As a baseline for detection performance, we consider two state-of-the-art anomaly
detection techniques using the raw HTTP request payload as input: The Markov
Chain detector uses a Markov chain as described in Section 4.1.2 over the full
content of the requests for anomaly detection. It is learned on the same training
data as TokDoc and similarly calibrated using the validation partition. As second
baseline, we have implemented a variant of Anagram [Wang et al., 2006]. The
detector stores n-grams of benign HTTP requests in a Bloom filter and uses the
ratio of unknown n-grams in incoming requests as anomaly score. The detector is
calibrated on the validation data, and n is fixed to two.

The results of our evaluation are summarized in Table 4.4. For both the
FIRST08 and BLOG09 data set we report the FPTD, which equals the false-positive
rate of a detector calibrated to the true-positive rate of TokDoc, and FNTD, which
is the rate of missed regular attacks, where each detector is calibrated to the false-
positive rate of TokDoc. Focusing on the FIRST08 data set we see, that both
TokDoc and Anagram yield an acceptable false-positive rate, however Anagram is
much more porous: nearly 17% of the attacks are not detected. On the contrary

101

4. Response

Proxy

Data Set Squid ModSec. twisted TokDoc

FIRST08 1.387 1.536 2.552 2.768
BLOG09 1.500 1.694 2.430 2.902

Tab. 4.5: Median runtime per request in milliseconds of different proxies for both
FIRST08 and BLOG09 data.

TokDoc is capable of detecting all attacks while attaining even a lower false-positive
rate than Anagram. The Markov chain is simply overburdened with the FIRST08
and even more with the BLOG09 data set, where its false-positive rate rises to
unacceptable 17%. Surprisingly Anagram breaks down on the BLOG09 data set:
when calibrated to the true-positive of TokDoc, Anagram flags all legitimate re-
quests as anomalous. This is due to the fact that 23% of the attacks have an
anomaly score of 0, which is the smallest possible score attainable, therefore tag-
ging all incoming requests as anomalous. But even if we calibrate Anagram to
a 23% false-negative rate (roughly 8 times higher than TokDoc in this setup), it
yields still a false-positive rate of 0.00038, which is a magnitude higher than Tok-
Doc. These numbers clearly demonstrate the outstanding performance of TokDoc
both in terms of false positives and negatives even for hard data sets like the
BLOG09 data.

4.2.2 Runtime Performance

To deliver inline intrusion prevention, a system itself has to be reasonably fast, since
every client request has to pass the reverse proxy without an intolerable delay. In
this part, we subject the TokDoc prototype to a stress test to see whether it can
be used in a real-time scenario.

Our prototype is implemented in Python using the twisted framework. This
framework provides a mature interface to a number of network protocols. By re-
using its proxy module and integrating an optimized n-gram C library into Python,
we were able to produce a full-fledged prototype of the TokDoc system. We replay
the complete testing slice of both the FIRST08 and BLOG09 (approximately 500k
requests each) to get a stable estimate of the processing time. As a baseline, we
measure the processing time with Squid as a proxy. Secondly, we consider the
ModSecurity web application firewall with a minimal setup of rules to assess, how
the additional parsing affects the processing time of a request. Furthermore we use
a very simple forwarding proxy application implemented in the twisted framework
to see, how much the twisted framework itself imposes on the processing runtime.
Finally, we test TokDoc in the same environment. The median runtime of each
setup is presented in Table 4.5.

First we can observe, that the two data sets exhibit different baselines: Gen-
erally the FIRST08 data set seems to have a simpler structure compared to the
BLOG09 data. Furthermore the highly optimized Squid and ModSecurity are
roughly 1 ms per request faster compared to their Python equivalents. When look-

102

4.3. Related Work

ing at the inter-application differences, we can observe an increase of 0.1 ms and 0.2
ms from Squid to ModSecurity and 0.2 ms and 0.5 ms from the twisted proxy to
TokDoc respectively. This implies, that the additional anomaly detection methods
employed in TokDoc just add up to roughly 0.1 ms to 0.3 ms per request. These
experiments clearly demonstrate that, while there is still room for improvement
in terms of runtime, the anomaly detection methods used in TokDoc are suitable
for running in an inline system and that TokDoc even in the current, unoptimized
state can already be used as an intrusion prevention system.

4.3 Related Work

The automatic protection of web applications is gaining an increasing attention
among security researchers. Conventional IDS such as Snort [Roesch, 1999] and
Bro [Paxson, 1999], which rely on specific attack signatures or predefined attack
characteristics, cannot provide adequate and timely protection against dynamically
changing web attacks. Anomaly detection techniques based on payload analysis, for
example Rieck and Laskov [2006], Wang et al. [2006], Krueger et al. [2008], Perdisci
et al. [2009], provide the only possibility for detecting previously unknown attacks.
These approaches enable protection of different network services and attain suffi-
cient throughput rates, yet the lack of protocol context in their analysis restricts
their use in intrusion prevention to simple dropping or redirection of packets.

First protocol-aware methods for detection of attacks in web traffic using anomaly
detection have been proposed by Kruegel and Vigna [2003] and extended in ensuing
work [Kruegel et al., 2005, Valeur et al., 2006, Robertson et al., 2006]. The main
idea of these methods is the combination of multiple anomaly detectors, such as
length checks, byte distributions and hidden Markov models, applied to individual
URI parameters. Similarly, finite state automata [Ingham et al., 2007] and multi-
ple Markov chains [Song et al., 2009] have been recently proposed for detection of
anomalous HTTP requests. Our approach differs from all these methods in that
it detects anomalous content in individual tokens instead of combining token-level
anomaly estimates to judge the anomaly of complete requests. Such fine-grained
detection enables us to devise novel token healing actions which are much less
disruptive than dropping requests.

Another line of research combines network anomaly detection with host moni-
toring. Anagnostakis et al. [2005] proposed a system in which anomalous requests
are executed in a specially instrumented “shadow honeypot” system. The feed-
back, whether the request actually harms a system, can then be used to update
an anomaly detector, similarly to the work of Locasto et al. [2005]. In line with
this idea, Vigna et al. [2009] combine SQL attack detection and a reverse proxy
to forward requests to web servers, which manage different levels of sensitive in-
formation, depending on the anomaly value of the web request. An SQL query
anomaly detector on the host decides whether or not the models for the web re-
quest anomaly detector should be updated, if the request results in a malicious
database query. TokDoc does not require any additional host instrumentation and
serves as a transparent proxy, which greatly simplifies its practical deployment.

103

4. Response

4.4 Outlook and Conclusion

We have introduced a protocol-aware reverse proxy TokDoc which is capable of
deciding at a token level which parts of a request are deemed normal and which
anomalous. Several intelligent mangling strategies for anomalous tokens, apart
from just dropping them, have been described. Experiments on real-world data
sets demonstrate the usefulness of the approach, and runtime measurements show
its readiness for inline intrusion prevention.

While the prototype showed good performance, especially in terms of false
negatives, we are aware of several extensions that can improve and extend the sys-
tem. Practical considerations include the integration of TokDoc into Squid or the
ModSecurity platform, which would be a valuable step towards runtime improve-
ment. Application in other domains like database intrusion detection [Bockermann
et al., 2009] with its structured query language would be a promising direction. The
coupling of the system with a shadow system as proposed in Anagnostakis et al.
[2005] and incorporation of a feedback loop in a similar vein to Locasto et al. [2005]
in combination with learning techniques is another promising extension. In the case
of TokDoc we are able to leverage the knowledge of the underlying protocol to do
an efficient preprocessing of the data by parsing the incoming request according
to the HTTP grammar. For more complex web applications or web servers which
serve a multitude of services there might be a significant overlap of different uses of
token types according to the underlying state of the service or the different types
of services hosted. Thus, application of methods from Chapter 2 as a further layer
to the response mechanism could be beneficial: For each session we would track
the state of the service according to the inferred abstract state machine. Anomaly
models in sequence are then dependent on this state and an even finer distinction of
abnormal behavior could be achieved. This mechanism would also amount to the
integration of session-awareness and long-term memory into TokDoc, which could
be used for flagging user sessions in which a lot of anomalous tokens have been seen
as dangerous. This could be used to reliably close down suspicious connections and
even track down attacks distributed over several requests.

Overall, the TokDoc system has proven to be a promising, full-fledged web ap-
plication firewall in the present state, which is capable of effectively preventing and
“healing” a wide range of recent web-based attacks. Its runtime performance makes
it readily applicable for protection of modern web applications. Once again we see
a layered structure in the processing tool-chain: After the parsing of a request
we embed each token in a specifically chosen, localized representation which en-
ables the subsequent check for statistically significant aberrations from the learned
model of normality. This modeling approach is even taken a step further in the
sense, that we map back our outcome of the probabilistic model into meaningful
“healing”-reactions which act as a transformation of information from the proba-
bilistic domain back to the real world. The layered structure of the TokDoc ap-
proach permits the stepwise development and successful application of probabilistic
methods to a real-world problem.

104

Chapter 5

Conclusion

In this chapter we summarize the findings of this thesis. We start by reviewing
the main parts of the analysis, detection and response architectures which we
developed in the preceding chapters. By inspecting the individual components of
these frameworks and relating them to the frequentist’s view of statistics we gain
insights into the preconditions, applications and postconditions of probabilistic
methods in network security. We conclude this chapter with an outlook on the
implications of our findings, how they relate to “classical” insights of software
engineering, and the potential pitfalls and merits of real-world applications.

5.1 From Analysis to Response

Giving a broader view of the results of this thesis in its totality we first have to
step back and inspect the individual parts of each developed solution of the security
cycle at a more coarse level.

Starting with the analysis framework, we have seen that after a preprocessing
of the raw network traffic we are able to represent the data as vectors in a vector
space. Picking just relevant dimensions of these vectors leads to a testing-based
feature selection which enables us to shrink down the data. Application of subspace
identification, for instance via the replicate-aware non-negative matrix factoriza-
tion or other clustering techniques, leads to a massively reduced representation of
the original data. This condensed view of the data allows us to extract an ap-
proximation of the abstract state machine by the probabilistic concept of Markov
models. This model is then reconnected to the actual, non-compressed messages by
enumerating all samples in the training pool, aligning them to the extracted states
of the abstract state machine, and inferring most likely templates and rules.

In the detection part we estimate the model complexity via the expected risk on
a hold-out set of data. Leveraging the convergence of the expected risk on subsets
we can transform the performance of a classifier in a reduced, binary trace matrix
which records whether the classifier was among the top-performers or not. This
binary performance indicator is calculated via robust testing on the results of a
model on hold-out data, therefore taking advantage of pooled and non-parametric
comparison procedures which act with a pre-specified significance level to control

105

5. Conclusion

for possible erroneous decisions. This binary trace of each model is then inspected
by a sequential testing scheme which transforms the individual performance mea-
sures on subsets into a global decision whether the model is a significant winner or
loser compared to all other models.

The response architecture acts on data in a predefined, structured format.
Therefore, we can parse the data and find localized embeddings which best fit
individual parts of the data found in the training pool. After this transformation
of the input data into a suitable feature space we can build a model of normality
from these features which represents the normal behavior found in the observed
traffic in a statistical sense. An aberration of this behavior can then be formulated
via probabilistic anomaly detection techniques based on the individual model for
the feature. The concrete model for each feature is chosen based on a data-driven
setup procedure which based on structural and statistical properties decides which
type of model and response strategy fits the feature best.

This high-level description of the solutions presented in this thesis shows that
in general we can observe a transformation of the raw data into a condensed fea-
ture space which enables a probabilistic modeling of underlying principles. In the
next section we discuss the connections of this transformation scheme with the
theory of statistical modeling. By ordering the individual steps of each part of
the security cycle we can observe that during this transformation procedure the
application of probabilistic methods naturally emerges and answers the need for
practical information extraction in real-world scenarios.

5.2 Application of Probabilistic Methods

Before we delve deeper in the subject of connections between statistics, probabilis-
tic modeling and transformation processes we have to define what we mean by
statistics and probability. Fisher [1922], one of the founders of modern statistics,
states in his work On the mathematical foundations of theoretical statistics:

[B]riefly, and in its most concrete form, the object of statistical meth-
ods is the reduction of data. [. . .] This object is accomplished by con-
structing a hypothetical infinite population, of which the actual data
are regarded as constituting a random sample. The law of distribution
of this hypothetical population is specified by relatively few parameters,
which are sufficient to describe it exhaustively in respect of all qualities
under discussion.

In essence, the first step in statistics is to define a sufficient distribution model
of the data, which is able to describe the data at hand and also generalizes to
new, not yet observed outcomes. Given this distribution model which extends
our knowledge of the data beyond the actual pool of data we can start to reason
about properties of this hypothetical population. Fisher [1922] defines the term
probability as follows:

When we speak of the probability of a certain object fulfilling a certain
condition, we imagine all such objects to be divided into two classes,

106

5.2. Application of Probabilistic Methods

Probabilistic

Methods D
e
te
c
tio
n

M
o
d
e
l C
o
m
p
le
xity

E
xp
e
cte
d
 R
isk

C
o
n
ve
rg
e
n
ce
 o
n
 S
u
b
se
ts

R
o
b
u
st T

e
stin

g

S
e
q
u
e
n
tia
l T
e
stin

g

R
e
s
p
o
n
s
e

P
a
rs
in
g

L
o
ca
liz
e
d
 E
m
b
e
d
d
in
g

A
n
o
m
a
ly
 D
e
te
ct
io
n

M
o
d
e
l o
f
N
o
rm
a
lit
y

D
a
ta
-D
ri
ve
n
 S
e
tu
p

Analysis
Vector Space

Feature Selection

Subspace Identification

Markov Model

Rule Inference

Fig. 5.1: By ordering the individual steps of each part of the security cycle we can ob-
serve that each individual step exhibit an increasingly higher proportion of probabilistic
methods going from the transformation to the actual modeling of the data.

according as they do or do not fulfill the condition. [. . .] It is a pa-
rameter which specifies a simple dichotomy in an infinite hypothetical
population, and it represents neither more nor less than the frequency
ratio which we imagine such a population to exhibit.

We see that probabilistic reasoning about this hypothetical population amounts
to the mere observation of frequencies. But in combination with the power of the
infinite the frequentist statistician is able to give mathematically sound predictions
of the future behavior of the modeled data. Therefore, the preceding description
of the data pool via a distribution model offers the modeler a way to extend his
knowledge of the previously seen data to future occurrences in a structured and
sound manner.

How does this relate to the observations about the transformation steps found
in the security cycle? Figure 5.1 shows the individual steps of each framework
ordered by their occurrence in the execution. In general, we can observe a tran-
sition from the physical preprocessing of the data to a probabilistic one which is
the input to the final probabilistic model of the data. For instance, in the analysis
part we first preprocess the binary communication data with several preprocess-
ing tools into a vectorial representation. This finite representation subsequently is

107

5. Conclusion

Analysis Detection Response

Physical
preprocessing

Embedding in
vector space

Determine model
complexity

Parsing of language

Probabilistic
preprocessing

Feature selection Estimate expected
risk

Find localized
embeddings

Identify suitable
subspace

Exploit convergence
on subsets

Use anomaly
detection

Probabilistic
modeling

Build Markov
model

Robust testing of
similar behavior

Learn model of
normality

Infer valid rules Sequential testing of
model performance

Data-driven
setup procedure

Tab. 5.1: By a linear ordering of each step a layered structure emerges where lower
layers take as input the output from the previous layers. Note that the amount of
probabilistic methods involved in the description and modeling of the problem increases
from layer to layer.

transformed into a much more condensed version based on statistical tests. This
shrunken-down version of the data enables the probabilistic modeling of the data
with a low-dimensional matrix factorization or clustering model which is the input
to the final Markov model describing the abstract state machine of the service un-
der consideration. Thus, the two-step procedure in classical frequentist statistics is
more or less also apparent in the modeling of more complex data: The initial trans-
formation of the physically preprocessed data into a downsized version corresponds
to a law of distribution of a hypothetical infinite population of the data which can
then be used to gain statistically sound, probabilistic insights into the data. We
will see in the next section, how this correspondence can be exploited to efficiently
structure probabilistic modeling of complex data for real-world applications.

5.3 Summary and Outlook

The high-level view of each part of the security cycle revealed that before we are
able to model and apply probabilistic models we first have to apply a physical
preprocessing to transform the unstructured, raw data into a suitable form. This
amounts in the case of the analysis framework to embedding the data into a vector
space, for the design framework in the description of the model complexity via
specific meta parameters, and for the response framework in parsing the data
according to a specific grammar. Thus, this initial transformation step lays the
ground for all subsequent analysis.

Based on the preprocessed data we can proceed by giving a first distributional
description of the data. By this probabilistic preprocessing we provide the means
for higher level reasoning about the data. In the analysis framework we shrink
down the number of features based on background knowledge on communication
protocols by statistical testing and find a suitable subspace via matrix factorization

108

5.3. Summary and Outlook

or clustering techniques. Exploiting the convergence of the expected risk of a
learning model we shrink down the performance of a multitude of models to a
simple binary trace matrix which describes the overall performance on the data
in the design framework. By defining localized embeddings and using anomaly
detection we are able to capture the essentials of the data in a probabilistic fashion
for the response framework.

This highly simplified description of the data gives us a solid understanding of
the distributional properties of the data and permits the probabilistic modeling of
our data according to the problem we want to solve: In the analysis framework we
model the abstract state machine via a Markov model which incorporates infor-
mation from the physical and probabilistic preprocessing and facilitates the rule
inference for filling the templates. Robust testing procedures and sequential analy-
sis allows us to determine underperforming models in the binary trace matrix with
statistical guarantees and even to stop the whole process for an efficient optimal
model finding process in the detection framework. Given the possible localized em-
beddings a data-driven setup procedure automatically decides based on structural
and statistical features of the data which model of normality is suitable for specific
token types in the response framework.

This layered approach is shown in Table 5.1 with all three frameworks side
by side. We can observe that each layer just takes the output of the previous
layer as input. Furthermore, the amount of probabilistic methods used in each
layer increases from top to bottom as indicated by the gray shading. Thus, this
layered approach achieves a high degree of decoupling which simplifies the actual
statistical modeling process of the problem domain: By first concentrating on the
distributional features of the data we lay ground for the much more sophisticated
statistical modeling of the data. It is no coincidence that this resembles the pro-
cess of good software design. Obviously, modern data is much more structured and
complex that one needs a much more decoupled statistical development process ex-
tending the initially introduced two-step procedure of first defining the distribution
followed by probabilistic reasoning of Fisher [1922].

During the development of the described solutions to the security cycle the best
practice of Unix-style development as described in Raymond [2003] has proven
to be highly beneficial for the overall development process: By identifying and
decoupling the different layers of the statistical modeling process we can develop
highly specialized tools which concentrate just on one step of the global modeling
process. All these tools can be easily debugged since they are relatively simple and
clearly structured. The total modeling process then amounts to an application of
a tool chain, where each tool generates the input for the next one. For instance,
in the analysis framework we developed for the physical preprocessing two tools,
which extract both the messages and session information from the binary network
traces recorded at a specific site. This is followed by the probabilistic preprocessing
implemented in the R programming language (see R Core Team [2012]). Both the
feature selection and the subspace identification via replicate-aware non-negative
matrix factorization can be found in the open source CRAN package PRISMA
which is publicly available. Output of this step of the analysis is the input to
the PRISMA Python (see Python Core Team [2012]) package which learns the

109

5. Conclusion

according probabilistic model, i.e., the Markov model, templates and rules based
on the input from the previous layers.

We think that not only the software engineering aspect of this layering ap-
proach is very fruitful as a design principle for new probabilistic modeling projects.
Releasing each part of the processing chain as publicly available, open sourced soft-
ware packages allow others to benefit from previous work done by other researchers.
For instance, by releasing the CVST as a CRAN package (see R Core Team [2012])
the fast model selection can be used out of the box in other software projects.
As pointed out by Sonnenburg et al. [2007] this not only leads to better software
but also faster advancement cycles since the time spent for re-implementing other
methods can be used much more beneficially for other aspects in the development
of new methods. This is even more the case in the domain of software security
due to the high overhead of data preprocessing. Hence, highly modularized and
publicly available tools definitely will benefit the overall progress of probabilistic
methods in security research.

Real-life application of methods gains increasing attention not only in the ma-
chine learning community (see for instance Wagstaff [2012] for a generic discussion
and Sculley et al. [2011] for a real-world implementation case study). In computer
security the real-life implementation and application is often a sine qua non for
a method to get accepted (see for instance Jamshed et al. [2012], De Groef et al.
[2012] for some recent, very implementation-heavy work). For probabilistic meth-
ods we have seen for instance in Section 2.4.1 that translating the results of the
probabilistic model back into the real-world application involves additional, often
non-probabilistic adjustments. During the course of this thesis the work covered in
Krueger et al. [2008] has been implemented in a research institute network. This
real-life application has shown, that the work involved to just deploy the solution in
a real-life environment is often considerable. Furthermore, privacy issues involved
in handling network data even complicate the whole process of gaining insights
into the transition of a research idea into the real world (some of the results can
be found in Schuster et al. [2010]). While it is certainly necessary to make this
transition into the real world, time and publishing constraints often work against
this will. We hope that the presented layered approach together with the plea for
more open source releases can act as a first step towards the solution of the pressing
problem of translating probabilistic methods into real-life applications for network
security.

110

Bibliography

R. Albright, J. Cox, D. Duling, A. Langville, and C. Meyer. Algorithms, initial-
izations, and convergence for the nonnegative matrix factorization. Technical
Report 81706, North Carolina State University, 2006.

D. W. Alling. Closed sequential tests for binomial probabilities. Biometrika, 53
(1/2):73–84, 1966.

K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D.
Keromytis. Detecting targeted attacks using shadow honeypots. In Proceedings
of the USENIX Security Symposium, pages 129–144, 2005.

S. Arlot, A. Celisse, and P. Painleve. A survey of cross-validation procedures for
model selection. Statistics Surveys, 4:40–79, 2010.

P. Armitage. Sequential Medical Trials. Blackwell, 1960.

P. L. Bartlett, P. M. Long, and R. C. Williamson. Fat-shattering and the learn-
ability of real-valued functions. Journal of Computer and Systems Science, 52
(3):434–452, 1996.

L. E. Baum and J. A. Eagon. An inequality with applications to statistical estima-
tion for probabilistic functions of markov processes and to a model for ecology.
Bulletin of the American Mathematical Society, 73(3):360–363, 1967.

M. A. Beddoe. Network protocol analysis using bioinformatics algorithms. Tech-
nical report, McAfee Inc., 2005.

R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University
Press, 1961.

Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation,
12(8):1889–1900, 2000.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter
optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pereira,

111

Bibliography

and K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems 24, pages 2546–2554, 2011.

D. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments.
Chapman & Hall, 1985.

L. Bilge and T. Dumitras. Before we knew it: an empirical study of zero-day attacks
in the real world. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 833–844, 2012.

M. Birattari. Tuning Metaheuristics: A Machine Learning Perspective. Springer,
2009.

M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm
for configuring metaheuristics. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 11–18, 2002.

M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2002.

J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural networks
and discriminant analysis in predicting forest cover types from cartographic vari-
ables. Computers and Electronics in Agriculture, 24(3):131–151, 1999.

C. Bockermann, M. Apel, and M. Meier. Learning sql for database intrusion de-
tection using context-sensitive modelling (extended abstract). In Proceedings of
the 6th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA ’09, pages 196–205, 2009.

C. Boutsidis and E. Gallopoulos. Svd based initialization: A head start for non-
negative matrix factorization. Pattern Recognition, 41(4):1350–1362, Apr. 2008.

R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122
(Standard), Oct. 1989. URL http://www.ietf.org/rfc/rfc1122.txt. Up-
dated by RFCs 1349, 4379.

J. K. Bradley and R. Schapire. Filterboost: Regression and classification on large
datasets. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20, pages 185–192, 2008.

M. L. Braun, J. Buhmann, and K.-R. Müller. On relevant dimensions in kernel
feature spaces. Journal of Machine Learning Research, 9:1875–1908, 2008.

J. Caballero, H. Yin, and Z. Liang. Polyglot: Automatic extraction of protocol
message format using dynamic binary analysis. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CSS), 2007.

J. Caballero, P. Poosankam, and C. Kreibich. Dispatcher: Enabling active botnet
infiltration using automatic protocol reverse-engineering. In Proceedings of the
16th ACM conference on Computer and Communications Security (CCS), 2009.

112

http://www.ietf.org/rfc/rfc1122.txt

Bibliography

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

S. Chien, J. Gratch, and M. Burl. On the efficient allocation of resources for hy-
pothesis evaluation: A statistical approach. IEEE Transactions Pattern Analysis
and Machine Intelligence, 17(7):652–665, 1995.

S. Chien, A. Stechert, and D. Mutz. Efficient heuristic hypothesis ranking. Journal
of Artificial Intelligence Research, 10(1):375–397, 1999.

W. G. Cochran. The comparison of percentages in matched samples. Biometrika,
37(3-4):256–266, 1950.

P. Comparetti and G. Wondracek. Prospex: Protocol specification extraction. In
Proceedings of the 30th IEEE Symposium on Security and Privacy, 2009.

M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. Swaddler: An approach for
the anomaly-based detection of state violations in web applications. In Recent
Advances in Intrusion Detection (RAID), pages 63–86, September 2007.

W. Cui and J. Kannan. Discoverer: Automatic protocol reverse engineering from
network traces. In Proceedings of the 16th USENIX Security Symposium, 2007.

W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz. Protocol-independent adaptive
replay of application dialog. In Proceedings of the 13th Network and Distributed
System Security Symposium (NDSS), 2006.

W. Cui, M. Peinado, K. Chen, and H. Wang. Tupni: Automatic reverse engineering
of input formats. In Proceedings of the 15th ACM conference on Computer and
Communications Security (CCS), 2008.

A. Dainotti, A. King, K. Claffy, F. Papale, and A. Pescapè. Analysis of a ”/0”
Stealth Scan from a Botnet. In Internet Measurement Conference (IMC), 2012.

W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web browser
with flexible and precise information flow control. In Proceedings of the 2012
ACM conference on Computer and communications security, CCS ’12, pages
748–759, 2012.

D. E. Denning. An intrusion-detection model. IEEE Transanctions on Software
Engineering, 13(2):222–232, 1987.

L. Devroy, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, 1996.

C. H. Q. Ding, T. Li, and W. Peng. On the equivalence between non-negative
matrix factorization and probabilistic latent semantic indexing. Computational
Statistics & Data Analysis, 52(8):3913–3927, 2008.

113

Bibliography

P. Domingos and G. Hulten. A general method for scaling up machine learning
algorithms and its application to clustering. In Proceedings of the 18th Interna-
tional Conference on Machine Learning, pages 106–113, 2001.

D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455, 1994.

P. Düssel, C. Gehl, P. Laskov, and K. Rieck. Incorporation of application layer pro-
tocol syntax into anomaly detection. In Proceedings of International Conference
on Information Systems Security (ICISS), pages 188–202, 2008.

J. M. Estévez-Tapiador, P. Garćıa-Teodoro, and J. E. Dı́az-Verdejo. Measuring
normality in http traffic for anomaly-based intrusion detection. Computer Net-
works, 45(2):175–193, 2004.

T. Evgeniou and M. Pontil. On the V gamma dimension for regression in reproduc-
ing kernel hilbert spaces. In O. Watanabe and T. Yokomori, editors, Algorithmic
Learning Theory, pages 106–117, 1999.

F-Secure. Mobile threat report. Q2 2012, 2012. URL http://www.f-secure.com/

weblog/archives/MobileThreatReport_Q2_2012.pdf.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard),
June 1999. URL http://www.ietf.org/rfc/rfc2616.txt. Updated by RFC
2817.

R. A. Fisher. On the mathematical foundation of theoretical statistics. Philosoph-
ical Transactions of the Royal Society A, 222:309–368, 1922.

S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for UNIX
processes. In Proceedings of the IEEE Symposium on Security and Privacy, pages
120–128, 1996.

A. M. Fraser. Hidden Markov Models and Dynamical Systems. Society for Industrial
and Applied Mathematics, 2008.

M. Friedman. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, 32(200):
675–701, 1937.

S. Geisser. The predictive sample reuse method with applications. Journal of the
American Statistical Association, 70(350):320–328, 1975.

D. Gollmann. Computer Security. Wiley, 2002.

M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection: Evasion,
traffic normalization and end-to-end protocol semantics. In Proceedings of the
USENIX Security Symposium, 2001.

D. A. Harville. Matrix Algebra from a Statistican’s Perspective. Springer, 1997.

114

http://www.f-secure.com/weblog/archives/MobileThreatReport_Q2_2012.pdf
http://www.f-secure.com/weblog/archives/MobileThreatReport_Q2_2012.pdf
http://www.ietf.org/rfc/rfc2616.txt

Bibliography

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2009.

N. A. Heckert and J. J. Filliben. NIST Handbook 148: DATAPLOT Reference
Manual, Volume I: Commands. National Institute of Standards and Technology
Handbook Series, 2003.

V. Heidrich-Meisner and C. Igel. Hoeffding and Bernstein races for selecting poli-
cies in evolutionary direct policy search. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 401–408, 2009.

M. Heiler and C. Schnörr. Learning sparse representations by non-negative matrix
factorization and sequential cone programming. Journal of Machine Learning
Research, 7:1385–1407, 2006.

P. Hethmon. Extensions to FTP. RFC 3659 (Proposed Standard), Mar. 2007.
URL http://www.ietf.org/rfc/rfc3659.txt.

P. Hethmon and R. Elz. Feature negotiation mechanism for the File Transfer
Protocol. RFC 2389 (Proposed Standard), Aug. 1998. URL http://www.ietf.

org/rfc/rfc2389.txt.

T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’99, pages 50–57, 1999.

P. Holland. Weighted ridge regression: Combining ridge and robust regression
methods. Technical Report 11, National Bureau of Economic Research, 1973.

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6(2):65–70, 1979.

P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal
of Machine Learning Research, 5:1457–1469, 2004.

K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest. Learning DFA representations
of HTTP for protecting web applications. Computer Networks, 51(5):1239–1255,
2007.

G. Jacob, R. Hund, C. Kruegel, and T. Holz. Jackstraws: Picking command and
control connections from bot traffic. Proceedings of the 20th USENIX Security
Symposium, 2011.

M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K. Park. Kar-
gus: a highly-scalable software-based intrusion detection system. In Proceedings
of the 2012 ACM conference on Computer and communications security, CCS
’12, pages 317–328, 2012.

I. T. Jolliffe. Principal Component Analysis. Springer, 1986.

115

http://www.ietf.org/rfc/rfc3659.txt
http://www.ietf.org/rfc/rfc2389.txt
http://www.ietf.org/rfc/rfc2389.txt

Bibliography

S. S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for gradient-
based adaptation of hyperparameters in svm models. In Advances in Neural
Information Processing Systems 19, pages 673–680, 2006.

R. Kohavi and G. H. John. Automatic parameter selection by minimizing estimated
error. In Proceedings of the 12th International Conference on Machine Learning,
pages 304–312, 1995.

U. Krengel. Einführung in die Wahrscheinlichkeitstheorie und Statistik. Vieweg,
2002.

C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In Proceedings
of the 10th ACM Conference on Computer and Communications Security, pages
251–261, 2003.

C. Kruegel, G. Vigna, and W. Robertson. A multi-model approach to the detection
of web-based attacks. Computer Networks, 48(5):717–738, 2005.

T. Krueger and K. Rieck. Intelligent defense against malicious javascript code. PIK
- Praxis der Informationsverarbeitung und Kommunikation, 35(1):54–60, 2012.

T. Krueger, C. Gehl, K. Rieck, and P. Laskov. An architecture for inline anomaly
detection. In Proceedings of the European Conference on Computer Network
Defense (EC2ND), pages 11–18, 2008.

T. Krueger, C. Gehl, K. Rieck, and P. Laskov. TokDoc: A self-healing web applica-
tion firewall. In Proceedings of the 25th ACM Symposium on Applied Computing
(SAC), pages 1846–1853, March 2010.

T. Krueger, N. Krämer, and K. Rieck. ASAP: automatic semantics-aware analysis
of network payloads. Proceedings of the ECML/PKDD Conference on Privacy
and Security Issues in Data Mining and Machine Learning, 2011.

T. Krueger, H. Gascon, N. Krämer, and K. Rieck. Learning stateful models for
network honeypots. In Proceedings of the 5th ACM Workshop on Security and
Artificial Intelligence, AISEC ’12, 2012a.

T. Krueger, D. Panknin, and M. Braun. Fast cross-validation via sequential testing.
Computing Research Repository, abs/1206.2248, 2012b. URL http://arxiv.

org/abs/1206.2248.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401:788–791, 1999.

C. Leita and M. Dacier. Automatic handling of protocol dependencies and reaction
to 0-day attacks with ScriptGen based honeypots. In Proceedings of the 9th
international conference on Recent Advances in Intrusion Detection (RAID),
2006.

116

http://arxiv.org/abs/1206.2248
http://arxiv.org/abs/1206.2248

Bibliography

C. Leita and K. Mermoud. ScriptGen: An automated script generation tool for
honeyd. In Proceedings of the 21st Annual Computer Security Applications Con-
ference (ACSAC), 2005.

Z. Lin, X. Jiang, and D. Xu. Automatic protocol format reverse engineering
through context-aware monitored execution. In Proceedings of the 15th Network
and Distributed System Security Symposium (NDSS), 2008.

M. E. Locasto, K. Wang, A. D. Keromytis, and S. J. Stolfo. Flips: Hybrid adaptive
intrusion prevention. In Recent Advances in Intrusion Detection (RAID), pages
82–101, 2005.

P. Maass and M. Rajagopalan. Does cybercrime really cost $1 trillion? Pro-
Publica, Aug. 1, 2012, 2012. URL https://www.propublica.org/article/

does-cybercrime-really-cost-1-trillion/.

D. Mackenzie and G. Pottinger. Mathematics, technology, and trust: Formal ver-
ification, computer security, and the U.S. military. IEEE Annals of the History
of Computing, 19(3):41–59, 1997.

D. Mankins, D. Franklin, and A. Owen. Directory oriented FTP commands. RFC
775, Dec. 1980. URL http://www.ietf.org/rfc/rfc775.txt.

O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search
for classification and function approximation. In Advances in Neural Information
Processing Systems 6, pages 59–66, 1994.

O. Maron and A. W. Moore. The racing algorithm: Model selection for lazy
learners. Artificial Intelligence Review, 11(1-5):193–225, 1997.

J. McHugh. Sets, bags, and rock and roll. In Computer Security – ESORICS 2004,
volume 3193 of Lecture Notes in Computer Science, pages 407–422. Springer,
2004.

C. K. McPherson and P. Armitage. Repeated significance tests on accumulating
data when the null hypothesis is not true. Journal of the Royal Statistical Society.
Series A, 134(1):15–25, 1971.

MDL. Malware domain list, 2012. URL http://www.malwaredomainlist.com/.

M. Meier. Intrusion Detection effektiv! Modellierung und Analyse von Angriffs-
mustern. Springer, 2007.

V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical bernstein stopping. In
Proceedings of the 25th international conference on Machine learning, ICML
’08, pages 672–679, 2008.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations Of Machine Learning.
MIT Press, 2012.

117

https://www.propublica.org/article/does-cybercrime-really-cost-1-trillion/
https://www.propublica.org/article/does-cybercrime-really-cost-1-trillion/
http://www.ietf.org/rfc/rfc775.txt
http://www.malwaredomainlist.com/

Bibliography

E. F. Moore. Gedanken-experiments on sequential machines. Automata Studies,
34:129–153, 1956.

F. Mosteller and J. W. Tukey. Data analysis, including statistics. In G. Lindzey
and E. Aronson, editors, Handbook of Social Psychology, volume 2, pages 80–203.
Addison-Wesley, 1968.

K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction
to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12
(2):181–201, 2001.

J. Newsome, D. Brumley, and J. Franklin. Replayer automatic protocol replay by
binary analysis. In Proceedings of the 13th ACM conference on Computer and
Communications Security (CCS), 2006.

Norton. 2012 norton cybercrime report. Symantec Corporation, 2012.
URL http://now-static.norton.com/now/en/pu/images/Promotions/

2012/cybercrimeReport/2012_Norton_Cybercrime_Report_Master_FINAL_

050912.pdf.

OSVDB. The open source vulnerability database, 2012. URL http://osvdb.org/.

P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values. Environmetrics,
5(2):111–126, 1994.

R. Pang and V. Paxson. A high-level programming environment for packet trace
anonymization and transformation. Proceedings of the 2003 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communi-
cations (SIGCOMM), 2003.

K. D. Patil. Cochran’s Q test: Exact distribution. Journal of the American Sta-
tistical Association, 70(349):186–189, 1975.

V. Paxson. Bro: A system for detecting network intruders in real-time. Computer
Networks, 31(23–24):2435–2466, Dec. 1999.

R. Pelossof and M. Jones. Curtailed online boosting. Technical report, Columbia
University, 2009.

R. Pelossof and Z. Ying. The attentive perceptron. Computing Research Repository,
abs/1009.5972, 2010.

R. Pelossof and Z. Ying. Rapid learning with stochastic focus of attention. Com-
puting Research Repository, abs/1105.0382, 2011.

R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee. McPAD: A multiple classi-
fier system for accurate payload-based anomaly detection. Computer Networks,
53(6):864–881, 2009.

118

http://now-static.norton.com/now/en/pu/images/Promotions/2012/cybercrimeReport/2012_Norton_Cybercrime_Report_Master_FINAL_050912.pdf
http://now-static.norton.com/now/en/pu/images/Promotions/2012/cybercrimeReport/2012_Norton_Cybercrime_Report_Master_FINAL_050912.pdf
http://now-static.norton.com/now/en/pu/images/Promotions/2012/cybercrimeReport/2012_Norton_Cybercrime_Report_Master_FINAL_050912.pdf
http://osvdb.org/

Bibliography

J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), Oct. 1985.
URL http://www.ietf.org/rfc/rfc959.txt. Updated by RFCs 2228, 2640,
2773, 3659.

Python Core Team. Python Programming Language. Python Software Foundation,
2012. URL http://www.python.org/.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2012. URL http://

www.R-project.org.

G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine
Learning, 42(3):287–320, 2001.

E. S. Raymond. The Art of UNIX Programming. Addison-Wesley, 2003.

K. Rieck. Computer security and machine learning: Worst enemies or best friends?
DIMVA Workshop on Systems Security (SYSSEC), 2011.

K. Rieck and P. Laskov. Detecting unknown network attacks using language mod-
els. In Detection of Intrusions and Malware, and Vulnerability Assessment, Pro-
ceedings of 3rd DIMVA Conference, pages 74–90, 2006.

K. Rieck and P. Laskov. Linear-time computation of similarity measures for se-
quential data. Journal of Machine Learning Research, 9:23–48, 2008.

K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection and prevention of
drive-by-download attacks. In Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 31–39, 2010.

W. Robertson, G. Vigna, C. Kruegel, and R. A. Kemmerer. Using generalization
and characterization techniques in the anomaly-based detection of web attacks.
In Proceedings of Network and Distributed System Security Symposium (NDSS),
2006.

M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings
of USENIX Large Installation System Administration Conference LISA, pages
229–238, 1999.

V. Roth. Probabilistic discriminative kernel classifiers for multi-class problems. In
Proceedings of the 23rd DAGM-Symposium on Pattern Recognition, pages 246–
253, 2001.

S. Schmerl, H. Koenig, U. Flegel, M. Meier, and R. Rietz. Systematic signature
engineering by re-use of snort signatures. In Proceedings of the 2008 Annual
Computer Security Applications Conference, ACSAC ’08, pages 23–32, 2008.

R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE
Transactions on Antennas and Propagation, 34(3):276 – 280, 1986.

B. Schneier. Secets & Lies. Wiley, 2004.

119

http://www.ietf.org/rfc/rfc959.txt
http://www.python.org/
http://www.R-project.org
http://www.R-project.org

Bibliography

B. Schneier. Liars & Outliers. Wiley, 2012.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support
vector algorithms. Neural Computation, 12(5):1207–1245, 2000.

I. Schuster, T. Krueger, C. Gehl, K. Rieck, and P. Laskov. Fips: First intrusion
prevention system. Technical Report 1, Fraunhofer FIRST, 2010. URL http:

//publica.fraunhofer.de/documents/N-148519.html.

D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and Y. Zhou.
Detecting adversarial advertisements in the wild. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, KDD ’11, pages 274–282, 2011.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
& Hall, 1986.

S. Smale and D.-X. Zhou. Estimating the approximation error in learning theory.
Analysis and Applications, 1(1):1–25, 2003.

P. Smyth. Exploring text and social network data with probabilistic models. Talk
held at TU Berlin, June 2012.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of ma-
chine learning algorithms. In P. Bartlett, F. C. N. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 25, pages 2960–2968, 2012.

R. Sommer and V. Paxson. Outside the closed world: On using machine learning
for network intrusion detection. In Proceedings of the 2010 IEEE Symposium on
Security and Privacy, SP ’10, pages 305–316, 2010.

Y. Song, A. D. Keromytis, and S. J. Stolfo. Spectrogram: A mixture-of-markov-
chains model for anomaly detection in web traffic. In Proceedings of Network
and Distributed System Security Symposium (NDSS), 2009.

S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bottou, G. Holmes, Y. Le-
Cun, K.-R. Müller, F. Pereira, C. E. Rasmussen, G. Rätsch, B. Schölkopf, A. J.
Smola, P. Vincent, J. Weston, and R. C. Williamson. The need for open source
software in machine learning. Journal of Machine Learning Research, 8:2443–
2466, 2007.

C. C. Spicer. Some new closed sequential designs for clinical trials. Biometrics, 18
(2):203–211, 1962.

A. Stanski. Konstruktives Probabilistisches Lernen. PhD thesis, Technische Uni-
versität Berlin, 2012.

120

http://publica.fraunhofer.de/documents/N-148519.html
http://publica.fraunhofer.de/documents/N-148519.html

Bibliography

A. Stanski and O. Hellwich. A projection and density estimation method for
knowledge discovery. PLoS ONE, 7(10):e44495, 2012.

I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian
kernels. Annals of Statistics, 35:575–607, 2007.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal
of the Royal Statistical Society. Series B, 36(2):111–147, 1974.

Symantec. Internet security threat report. Volume 17, Symantec Corporation,
2012.

M. W. Tate and S. M. Brown. Note on the Cochran Q test. Journal of the American
Statistical Association, 65(329):155–160, 1970.

T. Taylor, D. Paterson, J. Glanfield, C. Gates, S. Brooks, and J. McHugh. Flovis:
Flow visualization system. In Conference For Homeland Security, 2009. CATCH
’09. Cybersecurity Applications Technology, pages 186 –198, 2009.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka: Auto-
mated selection and hyper-parameter optimization of classification algorithms.
Computing Research Repository, abs/1208.3719, 2012.

F. Valeur, G. Vigna, C. Kruegel, and E. Kirda. An anomaly-driven reverse proxy
for web applications. In Proceedings of the 2006 ACM symposium on Applied
computing, pages 361–368, 2006.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

G. Vigna, F. Valeur, D. Balzarotti, W. Robertson, C. Kruegel, and E. Kirda.
Reducing errors in the anomaly-based detection of web-based attacks through
the combined analysis of web requests and SQL queries. Journal of Computer
Security, 17(3):305–329, 2009.

K. L. Wagstaff. Machine Learning that Matters. In Proceedings of the 29th Inter-
national Conference on Machine Learning, 2012.

A. Wald. Sequential Analysis. Wiley, 1947.

A. Wald and J. Wolfowitz. Optimum character of the sequential probability ratio
test. Annals of Mathematical Statistics, 19(3):326–339, 1948.

K. Wang and S. Stolfo. Anomalous payload-based network intrusion detection. In
Recent Advances in Intrusion Detection (RAID), pages 203–222, 2004.

K. Wang, G. Cretu, and S. Stolfo. Anomalous payload-based worm detection and
signature generation. In Recent Advances in Intrusion Detection (RAID), 2005.

K. Wang, J. Parekh, and S. Stolfo. Anagram: A content anomaly detector resistant
to mimicry attack. In Recent Advances in Intrusion Detection (RAID), pages
226–248, 2006.

121

Bibliography

Z. Wang, X. Jiang, W. Cui, and X. Wang. ReFormat: Automatic reverse engineer-
ing of encrypted messages. In European Symposium on Research in Computer
Security (ESORICS), 2009.

G. B. Wetherill and K. D. Glazebrook. Sequential Methods in Statistics. Chapman
& Hall, 1986.

R. R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing. Academic
Press, 1997.

G. Wondracek and P. Comparetti. Automatic network protocol analysis. In
Proceedings of the 15th Network and Distributed System Security Symposium
(NDSS), 2008.

122

Appendix A

Definitions

A.1 Geometrical Concepts in a Vector space

In this section we follow the treatment of Harville [1997] and introduce some general
geometrical concepts in vector spaces which are used throughout this thesis. Given
a vector space we define the 2-norm of a vector x “ px1, x2, . . . , xf q

J as follows:

‖x‖ :“
b

x2
1 ` x

2
2 ` ¨ ¨ ¨ ` x

2
f “:

?
x ‚ x “

?
xJx.

The usual Euclidean distance de between two vectors x and y can then be defined
as follows:

depx, yq :“ ‖x´ y‖ “
b

px1 ´ y1q
2 ` px2 ´ y2q

2 ` ¨ ¨ ¨ ` pxf ´ yf q2 “:
?
x ‚ y.

With the norm and the law of cosines we get for two vectors x and y the following
motivation for an angle (see Figure A.1):

‖x´ y‖2 “ ‖x‖2 ` ‖y‖2 ´ 2‖x‖‖y‖ cospθq

ô ´2x ‚ y “ ´2‖x‖‖y‖ cospθq

ô cospθq “
x ‚ y

‖x‖‖y‖
.

If we define the dot product for some matrices A,B as follows

A ‚B :“ tracepAJBq “ tracepBJAq,

where trace calculates the sum of the diagonal entries of the matrix, then all above
definitions extend naturally to matrices. For instance using the Frobenius norm of
a matrix A, i.e. ‖A‖ “

?
A ‚A, all the above definitions for distance and angles

extend naturally to the domain of matrices.

A.2 Probabilities

In this section we give a quick introduction to the concept of probability the-
ory based on the treatment of Krengel [2002]. First we define a probability space

123

A. Definitions

‖x‖
‖y‖

θ

0

‖x− y‖

Fig. A.1: Norms and angles in R2.

pΩ, F, P q, where Ω denotes the possible outcomes, F the σ-algebra on it defin-
ing the possible events and P : F ÞÑ r0, 1s is a probability measure satisfying the
following axioms:

4. P pΩq “ 1

5. P pAq ě 0 for all A P F

6. P p
Ť8
i“1Aiq “

ř8
i“1 P pAiq for all Ai P F with Ai XAj “ H, i “ j

We call P pAq, A P F the probability of event A. For two events A,B P F we
define the conditional probability as follows:

P pA|Bq :“
P pAXBq

P pBq
.

We call two events A,B P F independent, if

P pAXBq “ P pAqP pBq.

A random variable is a function X : Ω ÞÑ X mapping possible outcomes to a set
X . With

PXpAq :“ P pX´1pAqq A P X , X´1 the inverse map

we can define a probability measure for X. We write X „ PX to denote the fact,
that X is distributed according to the probability measure PX . We call n random
variables Xi : Ω ÞÑ Xi independent, if for all results Ai Ă Xi the corresponding
events X´1

i pAiq are independent. We define the mean and the variance of a random
variable X as follows:

ErXs :“
ÿ

ωPΩ

XpωqP pωq and V arrXs :“ ErpX ´ ErXsq2s.

For n random variables Xi : Ω ÞÑ Xi we write for the random vector X :“
pX1, X2, . . . , Xnq : Ω ÞÑ pX1 ˆ X2 ˆ ¨ ¨ ¨ ˆ Xnq and sets xi Ă Xi:

PXpX1 P x1, X2 P x2, . . . , Xn P xnq :“ P ptω P Ω : Xipωq P xi, i P 1, . . . , nuq.

We exemplify these concepts with the help of a binomial variable B. Suppose
we have n independent experiments, where we can have 1 or 0 as outcome with

124

A.3. Markov Models

probability π and 1´π, respectively. Then, Ω “ t0, 1un, and P pωq “ πkp1´πqn´k

with k the number of ones in ω. If we define by

Ek :“ tω P Ω :
n
ÿ

i“1

ωi “ ku

the event that we observe k ones, then

P pEkq “ bn,πpkq :“

ˆ

n

k

˙

πkp1´ πqn´k.

Therefore, the random variable B : Ω ÞÑ N with Bpωq “
řn
i“1 ωi follows a binomial

distribution, i.e. B „ bn,π. If we describe B as the sum of a series of n experiments
Bi we can write:

ErBs “ Er
n
ÿ

i“1

Bis “
n
ÿ

i“1

ErBis “
n
ÿ

i“1

1 ¨ π ` 0 ¨ p1´ πq “ n ¨ π.

Similar, using the independence of the individual experiments Bi we can calculate
the variance of B as follows:

V arrBs “ V arr
n
ÿ

i“1

Bis “
n
ÿ

i“1

V arrBis “
n
ÿ

i“1

ErB2
i s ´ ErBis

2 “ npπ ´ π2q

A.3 Markov Models

In this section we give some background to Markov models following the treatment
of Fraser [2008]. An indexed sequence of random variables

ST1 :“ rS1, S2, . . . , ST´1, ST s

is a Markov chain if it fulfills the Markov Assumption:

@t P 1, . . . , T : PSt|S1,S2,...,St´2,St´1
“ PSt|St´1

.

In case of a discrete Markov model the Si represent the internal states of the
system which determine its behavior. We can estimate probabilities of concrete
state sequences sT1 as follows:

PST1
psT1 q “ PS1ps1q

T
ź

t“2

PSt|St´1
1
pst|s

t´1
1 q

“ PS1ps1q

T
ź

t“2

PSt|St´1
pst|st´1q

For time-homogeneous, i.e. stationary Markov chains we have

PSt`1|Stpst`1|stq “ PSt|St´1
pst|st´1q

for all t, therefore it is sufficient to estimate the probabilities for the initial state
P pS1q and the state transition matrix PSt|St´1

pst|st´1q for all concrete outcomes of
the state space to define the Markov model.

125

A. Definitions

H0 is true H1 is true

Accept H0 Right decision Type II Error (β)
Reject H0 Type I Error (α) Right decision

Tab. A.1: Type I and type II error in statistical testing.

0.00

0.01

0.02

0.03

0.04

99860 99880 99900 99920 99940
Count

P
ro

ba
bi

lit
y

Fig. A.2: Distribution of a feature count F „ bn“100,000,π“0.999 overlayed by the
normal distribution approximation in red.

A.4 Statistical Testing

In statistical testing we want to decide, whether we can accept or reject a hy-
pothesis (H0) in favor to an alternative (H1). For this we have to make some
distributional assumptions to backup our arguments in a statistical sense. Then,
given a predefined significance level (normally α P t0.01, 0.05, 0.1u) we calculate
a test statistic given our data and can determine a p-value which describes the
probability to observe this or an even more extreme statistic given the hypothesis
H0. If this p-value is smaller or equal to our significance level α we reject the
hypothesis H0 and accept the alternative hypothesis H1. When testing hypotheses
several things can go wrong as summarized in the Table A.1 Basically, we control
the type I error by the significance level α. The type II error can be used to de-
scribe the power p1´ βq of the test, i.e. the probability of correctly rejecting H0.
To explicitly calculate this value we need to now the distribution of the data in
case the alternative hypothesis is true.

We exemplify these concepts with the help of the binomial test. Given the
hypothesis that a feature F is binomially distributed with a success probability of
π “ 0.999, Figure A.2 shows the probability distribution for n “ 100, 000 samples.
If we now observe a count for a feature we can easily check, how probable this would
be given our hypothesis, that F „ bn,π. For big n the binomial distribution can
be approximated by the normal distribution with mean nπ and variance nπp1´πq
plotted as red line in Figure A.2. We can see that observing a count of 99860 or
smaller is highly improbable.

126

A.4. Statistical Testing

The tests used in the CVST algorithm are common tools in the field of statistical
data analysis and in contrast to the binomial test are non-parametric test, since
the algorithm makes no distributional assumptions whatsoever. Here we give a
short summary based on the Heckert and Filliben [2003] and cast the notation into
the CVST framework context. Both methods deal with the performance matrix of
K configurations with performance values on r data points:

Data Points

Configuration 1 2 . . . r

1 x11 x12 . . . x1r

2 x21 x22 . . . x2r

3 x31 x32 . . . x3r
...

...
...

...
K xK1 xK2 . . . xKr

Both tests treat similar questions (“Do the K configurations have identical
effects?”) but are designed for different kinds of data: Cochran’s Q test is tuned
for binary xij while the Friedman test acts on continuous values. In the context of
the CVST algorithm the tests are used for two different tasks:

1. Determine whether a set of configurations are the top performing ones (step
Ê in the overview Figure 3.5 and the function topConfigurations in Al-
gorithm 2).

2. Check whether the remaining configurations behaved similar in the past (step
Ì in the overview Figure 3.5 and the function similarPerformance in
Algorithm 2).

In both cases, the configurations are compared either by the performance on
the samples (Point 1 above) or by the behavior on the last wstop traces (Point 2
above) of the remaining configurations. Depending on the learning problem either
the Friedman Test for regression tasks or the Cochran’s Q test for classification
tasks is used in Point 1. In both cases the hypotheses for the tests are as follows:

• H0: All configurations are equally effective (no effect)

• H1: There is a difference in the effectiveness among the configurations, i.e.,
there is at least one configuration showing a significantly different effect on
the data points.

A.4.1 Cochran’s Q Test

The test statistic T is calculated as follows:

T “ KpK ´ 1q

řK
i“1Ri ´

M
K

řr
i“1CipK ´ Ciq

127

A. Definitions

with Ri denoting the row total for the ith configuration, Ci the column total for
the ith data point, and M the grand total. We reject H0, if T ą χ2p1´ α,K ´ 1q
with χ2p1 ´ α,K ´ 1q denoting the p1 ´ αq-quantile of the χ2 distribution with
K ´ 1 degrees of freedom and α is the significance level. As Cochran [1950] points
out, the χ2 approximation breaks down for small tables. Tate and Brown [1970]
state that as long as the table contains at least 24 entries, the χ2 approximation
will suffice, otherwise the exact distribution should be used which can either be
calculated explicitly [see Patil, 1975] or determined via permutation.

A.4.2 Friedman Test

Let Rpxijq be the rank assigned to xij within data point i (i.e., rank of a configu-
ration on data point i). Average ranks are used in the case of ties. The ranks for
a configuration at position k are summed up over the data points to obtain

Rk “
r
ÿ

i“1

Rpxkiq.

The test statistic T is then calculated as follows:

T “
12

rKpK ` 1q

K
ÿ

i“1

pRi ´ rpK ` 1q{2q2.

If there are ties, then

T “
pK ´ 1q

řK
i“1pRi ´ rpK ` 1q{2q2

r
řK
i“1

řr
j“1Rpxijq

2s ´ rrKpK ` 1q2s{4
.

We reject H0 if T ą χ2pα,K ´ 1q with χ2pα,K ´ 1q denoting the α-quantile of the
χ2 distribution with K ´ 1 degrees of freedom and α being the significance level.

128

Appendix B

Proofs and Further Analysis

B.1 The Robot Protocol: A PRISMA Example

In order to illustrate the message-building algorithm used by the PRISMA method,
we have developed an experiment that eases to understand how the elements
learned are integrated with the Markov model. The Robot example is a simple
setup where a robot is randomly placed in a room filled with contaminated ob-
jects. Its goal is to find these objects and carry them to the base location where
they will be eliminated. Unfortunately, it has no view of the position of the objects
or itself within the room. Thus, in order to move around and notice if it has found

WALLs

CARRY2c

FREEs

CARRY3c

END

BASEs

GOc

FREEs

GOc

WALLs

GOc

BASEs

START

GOc

OBJECTs CARRY1c

Carry loop
Exploration loop

WALLs

CARRYc

END

BASEs

GOc As

Bs Cc

START

Fig. B.1: The Markov model of the robot protocol and the minimized version of the
state model.

129

B. Proofs and Further Analysis

an object or reached the limits of the room, it exchanges messages with a room
controller.

In our experiment, the robot has a fixed algorithm: At first, it randomly walks
through the rectangular room until it finds an object. Then, it goes straight up to
the top of the room carrying the object and to the left to reach the base, which
is situated at the upper left corner. The object is then destroyed and the robot is
dropped again randomly inside the room. The process continues until the robot
has found and removed all the objects.

The complete setup has a client-server architecture where the robot commu-
nicates with the controller by a simple protocol over the network. These network
traces are then analyzed by PRISMA, yielding a robot-honeyclient that is capable
of mimicking the behavior of the original robot.

The robot client sends its instructions to the controller using the messages GO

<dir> and CARRY <object> <dir>, where possible directions are UP, RIGHT, DOWN
and LEFT. The controller server responds with the following status messages after
each action of the robot: WALL, FREE, BASE and OBJECT <object>, where <object>
denotes the id of the object.

B.1.1 Markov Model

Figure B.1 presents the Markov model of the robot protocol, which has been ex-
tracted from the traces. As intended for this example and for completeness, every
possible message is present in the pool of simulated communication data. There-
fore, the model represents the complete robot protocol. The lower part of the
Markov chain models the communication between client and server during the ex-
ploration phase of the robot, while the upper part models the loop where the robot
is carrying the object to the base. The subindex indicates the active side of the
communication, client or server, in each state. The right side of Figure B.1 depicts
the simplified model obtained after the minimization algorithm has been applied
to the original model. States labeled A, B and C are meta-states resulting from the
abstraction of several states in the original model and are involved in each of the
described phases. Meta-state A represents the behavior of the robot client during
the exploration phase while meta-states B and C are part of the carrying loop.

B.1.2 Templates and Rules

The different templates associated with each state of the model are inferred from
the traces obtained by simulation: The number of runs is specified as an input
parameter. Each run requires as many sessions to complete as objects are placed
in the room and each session is formed by an arbitrary number of messages as a
result of the random direction of the movement.

Table B.1 contains examples of templates and rules which show how the search
algorithm is implemented by the model: When an object is found by the robot, the
room controller builds a message with the format shown in template 13 in state
OBJECTS. Following the only possible transition in the model, the next state is
CARRY1C, where the client constructs the message using the format of template

130

B.2. Non-Negative Matrix Factorization via Alternating Least Squares

State ID Format

OBJECTS 13 OBJECT l

CARRY1C 11 CARRY l UP

CARRY2C 10 CARRY l LEFT

CARRY3C 2 CARRY l l

FREES 5 FREE

(a) Templates

Src. Src. Dest.
Trans. Type ID Field Field

3;13;11 Copy 13 0 0
11;0;10 Copy 11 0 0
2;5;2 Copy 2 0 0
2;5;2 Copy 2 1 1

(b) Rules

Tab. B.1: Selected templates and rules from the robot example.

11 and the rule 3;13;11. This rule indicates that the data in the field 0 must be
copied to the field 0 of the current template. This results in the message: CARRY

<object> UP. When the robot has hit the upper wall, it builds a message in state
CARRY2C according to template 10 and rule 11;0;10. Now the robot is carrying
the object to the LEFT in state CARRY3C until it finds the base. The object
and the direction that must be followed are introduced in the message format of
template 2 associated to this state by using the rules with transitions 2;5;2.

B.2 Non-Negative Matrix Factorization via Alternating Least
Squares

In this section we give a concrete presentation of our non-negative matrix factor-
ization (NMF) algorithm which exploits replicated values in the data matrix to
decrease the runtime or allows the calculation of even very big data sets in mem-
ory. NMF models the data A P Rf̃ ,N with two matrices B P Rf̃ ,e, C P Re,N as
shown in Equation (2.2), repeated here for convenience:

A « BC with pB,Cq “ arg min
B,C

}A´BC}

s.t. bij ě 0, cjn ě 0 .

We have derived the inner workings of the replicate-aware version of NMF in
Section 2.1.3 and describe the resulting algorithm in Section B.2.1 for the sake of
completeness. We give the heuristic, how to automatically choose the inner dimen-
sion by a data-driven procedure in Section B.2.2, and discuss a useful initialization
scheme for NMF in Section B.2.3.

B.2.1 Non-Negative Matrix Factorization with Replicates

The function RRbyCVpY,X,W q estimates the optimal λ parameter for the ridge
regression problem minβ }Y ´Xβ}

2 ` λ}β}2 by 5-fold cross-validation.

131

B. Proofs and Further Analysis

Algorithm 3 Replicate-Aware NMF

1: function nmfWithReplicates(A, e,B,W)
2: N “ number of columns in A
3: f̃ “ number of rows in A
4: if B “ 0 then
5: bij “ |N p0, 1q| Ź Fill B with normally distr. data

6: if W “ 0 then
7: W “ IN,N

8: err “ 8
9: while |err ´ 1

2‖A´BC‖
2| ă ε do

10: err “ 1
2‖A´BC‖

2

11: λ “ RRbyCVpA,B,0q
12: C “ pBJB ` λIe,eq

´1pBJAq
13: CrC ă 0s “ 0 Ź Set all negative coordinates to 0
14: λ “ RRbyCVpAJ, CJ,W q
15: B “ pAWCJqpCWCJ ` λIe,eq

´1

16: BrB ă 0s “ 0 Ź Set all negative coordinates to 0
17: B “ B diagp1{‖b1‖, 1{‖b2‖, . . . , 1{‖be‖q Ź Normalize columns of B
18: C “ C diagp‖b1‖, ‖b2‖, . . . , ‖be‖q

B.2.2 Estimating the Inner Dimension

The inner dimension e can be chosen according to an argument in Schmidt [1986]:
The ordered eigenvalues of the data matrix can be split into a part which is actually
contributing to the real signal and a noise part. If we estimate the eigenvalues λi
on the original data matrix A and the eigenvalues pλi on a scrambled version pA,
where we randomize the features for each message and add confidence intervals
to the eigenvalues λi, pλi according to Jolliffe [1986], we can pick the last index as
inner dimension e, in which the confidence intervals λe, pλe do not overlap.

B.2.3 Initializing the Non-Negative Matrix Factorization

We have seen in Section B.2.1 that the replicate-aware non-negative matrix factor-
ization can be initialized with a suitable starting value for B. In a similar vein to
Boutsidis and Gallopoulos [2008] we propose to initialize the NMF algorithm with
positive and negative parts of a preceding SVD as shown in Algorithm 4.

Algorithm 4 Initial base for replicate-aware NMF

1: function generateInitialBase(A, e)
2: A “ HDV J Ź SVD of A
3: B “ Hr, 1 : t e2 us Ź Choose the first t e2 u components
4: sB “ ´B
5: sBr sB ă 0s “ 0 Ź Set negative values to 0
6: return r sB,B ` sBs Ź Return parts combined as one matrix

132

B.3. Proof of Convergence Theorem of CVST

B.3 Proof of Convergence Theorem of CVST

Recall (see Equation 3.1) that enpcq is the expected error of parameter configuration
c. We first prove that we have uniform convergence over finite sets of candidate
configurations if the error for individual configurations converges. Let ε ą 0, then

P

"

max
cPC

|enpcq ´ epcq| ą ε

*

“ P

˜

ď

cPC

|enpcq ´ epcq| ą ε

¸

ď
ÿ

cPC

P t|enpcq ´ epcq ą ε|u Ñ 0

since for each fixed c, enpcq Ñ epcq in probability.
For the proof of the second statement (convergence of the minimum), let ε “

maxcPC |enpcq ´ epcq|, then

epc˚nq ´ epc
˚q “ epc˚nq ´ enpc

˚
nq ` enpc

˚
nq ´ epc

˚q

ď ε` enpc
˚
nq ´ epc

˚q

ď ε` enpc
˚q ´ epc˚q

ď ε` ε “ 2ε,

where the first and third inequality hold because of the uniform bound on the error,
and the second one because c˚n is the minimizer of en.

Convergence in probability follows because

P tepc˚nq ´ epc
˚q ą εu ď P tmax

cPC
|enpcq ´ epcq| ą

ε

2
u Ñ 0.

Finally, for the third statement (convergence for subsets), we start by using the
same argument as for the second statement,

enpc
˚
mq ´ enpc

˚
nq ď 2 max

cPC
|empcq ´ enpcq|

ď 2 max
cPC

|empcq ´ epcq| ` 2 max
cPC

|epcq ´ enpcq|

“: 2mm ` 2mn.

Now fix some δ, ε ą 0. First of all, note that

2mm ` 2mn ě ε implies 2mm ě
ε

2
_ 2mn ě

ε

2
.

Then,
P t2mm ` 2mn ě εu ď P tmm ě ε{4u ` P tmn ě ε{4u.

As already shown, these probabilities converge to zero, such that there exists an l
such that for all n,m ě l,

P tmm ě ε{4u ď
δ

2
, and P tmn ě ε{4u ď

δ

2
.

Therefore,

P tenpc
˚
mq ´ enpc

˚
nq ě εu ď P tmm ě ε{4u ` P tmn ě ε{4u ď δ,

for all m,n ě l, in particular for l ď m ď n.

133

B. Proofs and Further Analysis

B.4 Proof of Safety Zone Bound of CVST

In this section we prove the safety zone bound of Section 3.3.1. We will follow the
notation and treatment of the sequential analysis as found in the original publica-
tion of Wald [1947], Sections 5.3 to 5.5. First of all, Wald proves in Equation 5:27
that the following approximation holds:

ASNpπ0, π1|π “ 1.0q “
log 1´βl

αl

log π1
π0

.

The minimal ASNpπ0, π1|π “ 1.0q is therefore attained if log π1
π0

is maximal, which
is clearly the case for π1 “ 1.0 and π0 “ 0.5, which holds by construction. So we
get the lower bound of S for a given significance level αl, βl:

S ě
Q

log
1´ βl
αl

{ log 2
U

.

The lower line L0 of the graphical sequential analysis test as exemplified in Fig-
ure 3.5 is defined as follows (see Equation 5:13 - 5:15):

L0 “
log βl

1´αl

log π1
π0
´ log 1´π1

1´π0

` n
log 1´π0

1´π1

log π1
π0
´ log 1´π1

1´π0

.

Setting L0 “ 0, we can get the intersection of the lower test line with the x-axis
and therefore the earliest step ssafe, in which the procedure will drop a constant
loser configuration. This yields

ssafe “ ´
log βl

1´αl

log π1
π0
´ log 1´π1

1´π0

{
log 1´π0

1´π1

log π1
π0
´ log 1´π1

1´π0

“ ´
log βl

1´αl

log 1´π0
1´π1

“
log βl

1´αl

log 1´π1
1´π0

“
log βl

1´αl

log 2´ S

b

1´βl
αl

.

The last equality can be derived by inserting the closed form of π1 given π0 “ 0.5:

S “ ASNpπ0, π1|π “ 1.0q “
log 1´βl

αl

log π1
π0

“
log 1´βl

αl

log 2π1
ô π1 “

1

2
S

d

1´ βl
αl

.

Setting ssafe in relation to the maximal number of steps S yields the safety zone
bound of Section 3.3.1.

B.5 False Negative Rate of CVST for Underestimated Change
Point

In Section 3.3.1 we have investigated how the CVST algorithm performs if the ex-
perimenter was able to ensure a stable regime via the safety zone. Now, we go even
a step further and look at the performance if the experimenter underestimated the

134

B.5. False Negative Rate of CVST for Underestimated Change Point

S=10 S=20

0.0

0.2

0.4

0.6

0.8

1.0

● ●

● ●

●

● ● ● ●

● ● ● ● ● ● ●

● ●

● ●

● ●

●
● ● ● ● ●

2 4 6 8 5 10 15
Change Point

Fa
ls

e
N

eg
at

iv
e

R
at

e π
● 0.1

0.2

0.3

0.4

0.5

Fig. B.2: False negatives generated with the open sequential test for non-stationary
configurations, i.e., at the given change point the Bernoulli variable changes its πbefore
from the indicated value to 1.0.

change point scp. To get insight into the dropping rate we simulate those switch-
ing configurations by independent Bernoulli variables which change their success
probability π from a chosen πbefore P t0.1, 0.2, . . . , 0.5u to a constant 1.0 at a given
change point. This behavior imitates the behavior of a switching configuration
which starts out as a loser (i.e. up to the change point the trace will consist more
or less of zeros) and after enough data is available turns into a constant winner.

The relative loss of these configurations for 10 and 20 steps is plotted in Fig-
ure B.2 for different change points. The figure reveals our theoretical findings of
Lemma 2 showing the corresponding safety zone for the specific parameter settings:
For instance for αl “ 0.01 and βl “ 0.1 and S “ 10 steps, the safety zone amounts
to 0.27ˆ 10, meaning that if the change point for all switching configurations oc-
curs at step one or two, the CVST algorithm would not suffer from false positives.
Similarly, for S “ 20 the safety zone is 0.39 ˆ 20 “ 7.8. These theoretical results
are confirmed in our simulation study, where the false negative rate is zero for suf-
ficiently small change points for the open variant of the test. After that, there are
increasing probabilities that the configuration will be removed. Depending on the
success probability of the configuration before the change point, the resulting false
negative rate ranges from mild for π “ 0.5 to relatively severe for π “ 0.1. The
later the change point occurs, the higher the resulting false negative rate will be.
Interestingly, if we increase the total number of steps from 10 to 20, the absolute
values of the false negative rates are significantly lower. So even when the exper-
imenter underestimates the actual change point, the CVST algorithm has some
extra room which can even be extended by increasing the total number of steps.

135

B. Proofs and Further Analysis

B.6 Proof of Computational Budget of CVST

For the size N of the whole data set and a cubic learner, resulting in a learning
time of t “ N3, one observes that learning on a proportion of size i

SN takes about
i3

S3 t time. Via construction one has to learn on all k parameter configurations in
each step before hitting sr ˆ S and on K ˆ p1´ rq parameter configurations with
drop ratio r afterwards. Thus, the entirely needed computation time is given by

K ˆ p1´ rq
srˆS
ÿ

i“1

i3

S3
t`K ˆ r

S
ÿ

i“1

i3

S3
t

which should be smaller than the given time budget T .

Making use of the equality
j
ř

i“1
i3 “ j2pj`1q2

4 one can reformulate the inequality:

T ě
tˆKp1´ rq

S3

sr ˆ S
2psr ˆ S ` 1q2

4
`
tˆK ˆ r

S3

S2pS ` 1q2

4

“
tˆK

S

”

p1´ rq
s2psr ˆ S ` 1q2

4
` r

pS ` 1q2

4

ı

It is obvious that this inequality is quadratic in the variable S which can be solved
by bringing the above inequality in standard form:

0 ě
”

p1´ rq
s2
rpsr ˆ S ` 1q2

4
` r

pS ` 1q2

4

ı

´
T ˆ S

tˆ k

ô 0 ě
p1´ rqs4

r ` r

4
S ` 1s2

r `

”

p1´ rqs3
r ` r

2
´

T

tˆ k

ı

S `
p1´ rqs2

r ` r

4

ô 0 ě Ss2
r ` 2

tˆ kp1´ rqs3
r ` tˆ k ˆ r ´ 2T

pp1´ rqs4
r ` rqtˆ k

S `
p1´ rqs2

r ` r

p1´ rqs4
r ` r

.

Substituting a “ tˆkp1´rqs3r`tˆkˆr´2T
pp1´rqs4r`rqtˆk

and b “ p1´rqs2r`r
p1´rqs4r`r

above is equivalent to:

S “ ´a` y, y P
!

´
a

a2 ´ b,`
a

a2 ´ b
)

.

For the sake of a meaningful step amount, i.e. S ą 0 and furthermore S as large
as possible we choose it as

S “
Y

´a`
a

a2 ´ b
]

.

Note that S is a function of the parameter s. Since obviously b ě 0 holds a must
be negative in order to gain a positive step amount. Furthermore the root has to
be solvable. So the following constraints on sr have to be made:

p1q 2T ě tˆ kp1´ rqs3
r ` tˆ k ˆ r

p2q a2 ě b.

136

B.7. Example Run of CVST Algorithm

B.7 Example Run of CVST Algorithm

In this section we give an example of the whole CVST algorithm on one noisy
sinc data set of n “ 1, 000 data points with intrinsic dimensionality of d “ 2.
The CVST algorithm is executed with S “ 10 and wstop “ 4. We use a ν-SVM
[Schölkopf et al., 2000] and test a parameter grid of log10pσq P t´3,´2.9, . . . , 3u
and ν P t0.05, 0.1, . . . , 0.5u. The procedure runs for 4 steps after which the early
stopping rule takes effect. This yields the following trace matrix (only remaining
configurations are shown):

n “ 90 n “ 180 n “ 270 n “ 360

log10pσq “ ´2.3, ν “ 0.35 0 0 1 0
log10pσq “ ´2.3, ν “ 0.40 0 1 1 0
log10pσq “ ´2.3, ν “ 0.45 0 1 0 1
log10pσq “ ´2.2, ν “ 0.30 0 1 0 0
log10pσq “ ´2.2, ν “ 0.35 0 1 1 0
log10pσq “ ´2.2, ν “ 0.40 0 1 1 1
log10pσq “ ´2.2, ν “ 0.45 0 1 1 1
log10pσq “ ´2.2, ν “ 0.50 0 0 1 1
log10pσq “ ´2.1, ν “ 0.35 0 1 1 1

log10pσq “ ´2.1, ν “ 0.40 0 1 1 1

log10pσq “ ´2.1, ν “ 0.45 0 1 1 1
log10pσq “ ´2.1, ν “ 0.50 1 0 1 1
log10pσq “ ´2.0, ν “ 0.50 0 0 1 1

The corresponding mean square errors of the remaining configurations after
each step are shown in the next matrix. Based on these values, the winning con-
figuration, namely log10pσq “ ´2.1, ν “ 0.40 is chosen:

n “ 90 n “ 180 n “ 270 n “ 360

log10pσq “ ´2.3, ν “ 0.35 0.0370 0.0199 0.0145 0.0150
log10pσq “ ´2.3, ν “ 0.40 0.0362 0.0197 0.0146 0.0146
log10pσq “ ´2.3, ν “ 0.45 0.0356 0.0197 0.0146 0.0144
log10pσq “ ´2.2, ν “ 0.30 0.0365 0.0195 0.0146 0.0148
log10pσq “ ´2.2, ν “ 0.35 0.0351 0.0193 0.0142 0.0145
log10pσq “ ´2.2, ν “ 0.40 0.0345 0.0194 0.0143 0.0141
log10pσq “ ´2.2, ν “ 0.45 0.0340 0.0193 0.0143 0.0140
log10pσq “ ´2.2, ν “ 0.50 0.0332 0.0200 0.0145 0.0138
log10pσq “ ´2.1, ν “ 0.35 0.0353 0.0194 0.0144 0.0142

log10pσq “ ´2.1, ν “ 0.40 0.0343 0.0195 0.0142 0.0138

log10pσq “ ´2.1, ν “ 0.45 0.0340 0.0197 0.0140 0.0138
log10pσq “ ´2.1, ν “ 0.50 0.0329 0.0199 0.0142 0.0137
log10pσq “ ´2.0, ν “ 0.50 0.0351 0.0204 0.0145 0.0137

137

	List of Symbols
	Introduction
	Network Security and Machine Learning
	Probabilistic Methods for Network Security
	List of Published Work

	Analysis
	The PRISMA Method
	Preprocessing of Network Data
	Embedding of Messages
	Clustering for Event Inference
	Inference of State-Machine
	Learning Templates and Rules
	Simulation of Network Communication

	Evaluation of Stateless Communication
	Matrix Factorization Methods
	Analysis of Honeypot Data
	Effectivity of Embedding

	Evaluation of Stateful Communication
	Data Sets and Dimension Reduction
	Properties of Learned Models
	Completeness and Correctness
	Case Study: Koobface

	Discussion and Related Work
	Practical Extensions
	Other Approaches

	Outlook and Conclusion

	Detection
	Cross-Validation on Subsets
	Fast-Cross Validation via Sequential Testing (CVST)
	Robust Transformation of Test Errors
	Determining Significant Losers
	Early Stopping and Final Winner
	Meta Parameters for the CVST

	Theoretical Properties of the CVST Algorithm
	Error Bounds in a Stable Regime
	Fast-Cross Validation on a Time Budget

	Experiments
	Artificial Data Sets
	Benchmark Data Sets

	Discussion and Related Work
	Sequential Testing in Machine Learning
	Open versus Closed Sequential Testing

	Outlook and Conclusion

	Response
	TokDoc – The Token Doctor
	Token Types
	Anomaly Detectors
	Healing Actions
	Setup of TokDoc

	Evaluation
	Detection Performance
	Runtime Performance

	Related Work
	Outlook and Conclusion

	Conclusion
	From Analysis to Response
	Application of Probabilistic Methods
	Summary and Outlook

	Bibliography
	Definitions
	Geometrical Concepts in a Vector space
	Probabilities
	Markov Models
	Statistical Testing
	Cochran's Q Test
	Friedman Test

	Proofs and Further Analysis
	The Robot Protocol: A PRISMA Example
	Markov Model
	Templates and Rules

	Non-Negative Matrix Factorization via Alternating Least Squares
	Non-Negative Matrix Factorization with Replicates
	Estimating the Inner Dimension
	Initializing the Non-Negative Matrix Factorization

	Proof of Convergence Theorem of CVST
	Proof of Safety Zone Bound of CVST
	False Negative Rate of CVST for Underestimated Change Point
	Proof of Computational Budget of CVST
	Example Run of CVST Algorithm

