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Self-Learning Network Intrusion
Detection
Selbstlernende Angriffserkennung im Netz

Konrad Rieck, Technische Universität Berlin, laureate of the CAST/GI Dissertation Award IT-Security 2010

Summary Services in the Internet are confronted with
a growing amount and diversity of network attacks. Regu-
lar instruments of computer security increasingly fail to fend
off this threat, as they rely on the manual generation of
detection patterns and lack protection from unknown threats.
In this article, we present a framework for self-learning in-
trusion detection, which allows for automatically identifying
unknown attacks in the application layer of network com-
munication. The framework links concepts from computer
security and machine learning for deriving geometric models
of normal network data and identifying attacks as deviations
thereof. Empirically, this ability can be demonstrated on real
network traffic, where a prototype of the framework iden-
tifies 80–97% of unknown attacks with less than 0.002%
false positives and throughput rates between 26–60 Mbit/s.
��� Zusammenfassung Dienste im Internet sind einer

wachsenden Anzahl und Diversität von Angriffen ausgesetzt.
Herkömmliche Instrumente der IT-Sicherheit sind ungeeignet,
dieser Bedrohung langfristig entgegen zu wirken, da sie auf
der manuellen Erstellung von Erkennungsmustern beruhen
und keinen Schutz vor neuen und unbekannten Angriffen
bieten. In diesem Artikel wird ein Rahmenwerk zur selb-
stlernenden Angriffserkennung vorgestellt, das es ermöglicht,
unbekannte Angriffe gegen Netzwerkdienste automatisch
zu erkennen. Das Rahmenwerk verbindet Konzepte der IT-
Sicherheit und des maschinellen Lernens, um Nutzdaten
der Dienste geometrisch zu analysieren und Angriffe als
Ausreißer zu erkennen. Diese Fähigkeit kann empirisch
bestätigt werden, wobei ein Prototyp eine Erkennung von
80–97% der unbekannten Angriffe mit weniger als 0,002%
falschen Alarmen und einem Durchsatz von 26–60 Mbit/s
erzielt.

Keywords K.6.5 [Computing Milieux: Management of Computing and Information Systems: Security and Protection]; network
security, intrusion detection, machine learning ��� Schlagwörter Netzwerksicherheit, Angriffserkennung, maschinelles
Lernen

1 Introduction
Over the last years the Internet evolved to a univer-
sal communication platform that provides a wealth of
services to its users, including electronic commerce, so-
cial networks and broadband communication. With this

Dr. Rieck earned his doctorate at the School of Electrical Engin-
eering and Computer Sciences of the Technische Universität Berlin.
His dissertation is entitled Machine Learning for Application Intru-
sion Detection. It has been awarded with the Prize 2010 for Best
Dissertation in IT-Security by the Competence Center for Applied
Security Technology (CAST) e. V. and the Gesellschaft für Informatik
e. V. The examiners were Prof. Dr. Klaus-Robert Müller, TU Berlin,
Prof. Dr. John McHugh, Dalhousie University, Canada, and Dr. Pavel
Laskov, University Tübingen.

rapid growth, however, crime has found its way to the
Internet. Services in the Internet are at steady risk of be-
ing compromised and misused for illegal purposes, such
as theft of user data, propagation of malicious software
or distribution of spam messages. This threat is driven
by an underground economy that systematically employs
and advances network attacks for compromising network
services [3; 15].

Unfortunately, regular instruments of computer secu-
rity increasingly fail to protect from the threat of network
attacks. The majority of protection measures pursues the
concept of misuse detection, where attacks are identi-
fied using known patterns of misuse. While effective
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Self-Learning Network Intrusion Detection ���

Figure 1 Schematic depiction of self-learning intrusion detection.

against known threats, misuse detection inherently lags
behind attack development and fails to protect from novel
threats. Crucial time elapses from discovery of a new
attack to deployment of a detection pattern, as the at-
tack needs to be manually inspected and an appropriate
pattern crafted. Consequently, services in the Internet
regularly fall victim to novel attacks and there is an urgent
demand for alternative techniques capable of identifying
unknown threats.

In this article, we address this problem and present
a framework for self-learning intrusion detection, which
allows to automatically identify unknown attacks in the
application layer of network traffic. The framework builds
on linking concepts from computer security and machine
learning. To this end, the incoming network payloads
of a service are embedded in a vector space, such that
their characteristics are expressed geometrically and ac-
cessible to means of machine learning. This geometric
representation enables learning models of normal com-
munication and detecting unknown attacks as deviation
thereof, independently of manually crafted detection pat-
terns. A schematic depiction of this process is shown in
Fig. 1, where a network payload is exemplarily embedded
and geometrically analysed.

The ability to detect unknown network attacks can
be empirically demonstrated on real network traffic and
attacks. In these experiments, a prototype of the frame-
work called Sandy significantly outperforms the popular
intrusion detection system Snort and state-of-the-art
anomaly detection methods by identifying 80–97% of
unknown attacks with less than 0.002% false posi-
tives. During operation, Sandy attains a throughput of
26–60 Mbit/s, rendering it readily applicable for protec-
tion of small and medium network services. Moreover,
it possesses the ability to visualize detected anomalies
for further forensic analysis. These results demonstrate
that self-learning intrusion detection provides a valuable
instrument for protecting network services – despite re-
curring preconceptions in the security community [4; 14].

The framework for self-learning intrusion detection
is systematically developed in the dissertation [9]. We
herein provide a brief introduction to its main con-
tributions: the generic embedding of network payloads
(Sect. 2) and the geometric detection of attacks (Sect. 3).
Additionally, we present some of the results obtained with
real network traffic and attacks (Sect. 4).

2 From Payloads to Vector Spaces
The syntax and semantics of communication with net-
work services are defined by standard protocols, such as
HTTP, DNS or FTP. Although these protocols precisely
specify the form of transferred content, this represen-
tation of data is not directly suitable for analysis using
machine learning, as learning methods usually operate
on numerical vectors. Hence, a key to self-learning de-
tection of attacks is the embedding of network payloads
in a vector space.

For this embedding, we consider a network payload as
a string of bytes sent to a service, which depending on the
granularity of analysis may correspond to the content of
a network packet, request or connection. This string can
be characterized using different classes of features, which
range from simple numerical measures to sequential and
syntactical constructs, such as sets of strings and parse
trees. If we associate the features of one such class with
the dimensions of a vector space, we obtain a generic
way for associating payloads with vectors, where individ-
ual dimensions reflect the occurrences of features in the
payloads.

To understand how this embedding works, let us con-
sider the feature class of n-grams as an example. An
n-gram is essentially a string of length n and the network
payloads are mapped to a vector space, whose dimensions
are associated with all such strings. As shown in Fig. 1 for
n = 3, this embedding is carried out by first extracting
all n-grams from a payload and then generating a vector,
such that all dimensions associated with the extracted
n-grams are set to 1 and all other dimensions to 0. In
this way, the content and structure of the payload are
reflected geometrically and thereby they are accessible to
means of machine learning.

This embedding, however, imposes a dilemma: On the
one hand, the accurate detection of attacks requires an
expressive vector space with as many features as possible,
while on the other hand efficiently operating with mil-
lions of dimensions easily turns intractable. Fortunately,
for several feature classes the embedding is sparse, that
is, the vast majority of dimensions is zero. For example,
the vector space induced by n-grams comprises 256n di-
mensions, yet a network payload of m bytes contains at
most m unique n-grams. This sparsity can be exploited to
derive linear-time algorithms for extraction and compari-
son of vectors [10]. Instead of operating with full vectors,
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only the non-zero dimensions are considered during an-
alysis of network payloads.

3 Geometric Anomaly Detection
The embedding of network payloads induces a geometry
in the vector space. Payloads that share several features
lie close to each other and form dense clouds in the vec-
tor space, whereas payloads with few shared features are
scattered in different regions. These geometric relations
can be exploited to derive statistical models of normal
communication, which enable identifying all attacks that
deviate in their features from normality. Thus, as the
second key contribution, the dissertation [9] introduces
concepts for geometric anomaly detection and learning
models of network payloads.

Network attacks often significantly deviate from nor-
mal communication. For example, many buffer overflow
attacks contain uniform byte patterns, which infrequently
occur in legitimate payloads. Such deviation can be iden-
tified by a global model of normality, where the model
captures features shared by the majority of payloads.
An intuitive geometric shape reflecting this concept is
a hypersphere (a sphere in a high-dimensional vector
space). Normality is modeled by placing a hypersphere
around the embedded payloads and the deviation from
this model is determined by the distance from the hy-
persphere [13]. Figure 2a shows a global model enclosing
a set of points.

However, normality can not always be cast into
a global model. For example, if a web server provides
multiple virtual hosts, the network payloads partially
share features and are scattered across different regions in
the vector space. This problem can be addressed by a local
model of normality. Geometrically, a local perspective can
be derived from the concept of k-nearest neighbors [2].
Normality is modeled by the local neighborhood of an
embedded payload and the deviation from this model is
determined by the distance to the k-nearest neighbors.
Figure 2b illustrates the local detection of anomalies for
a set of points.

In contrast to previous work, both models for anomaly
detection are solely defined in terms of geometry and can
be applied for arbitrary network services and embed-
dings. As a result, realizations of this detection technique

Figure 2 Geometric anomaly detection.

have been successfully applied for various network ser-
vices, for example using the protocols HTTP, FTP, SMTP,
SMB and SIP. Another essential advantage of geometric
models is their robustness to noisy training data. In par-
ticular, the hypersphere model can be extended with a
“soft margin”, which allows to compensate unknown at-
tacks in the learning data.

4 Experiments and Applications
The proposed framework provides a link between
computer security and machine learning by modeling
intrusion detection as a geometric problem. In practice,
however, it is not an elegant design but the sheer per-
formance of a security tool that matters. Consequently,
a prototype of the framework called Sandy has been
developed and evaluated for detection performance, ro-
bustness and network throughput. Sandy employs the
feature class of n-grams and a global model of normality,
as this combination best balances detection and run-time
performance [9].

For the evaluation, 10 days of consecutive network
traffic have been acquired for the application-layer proto-
cols HTTP and FTP. The HTTP traces have been recorded
at the web server of Fraunhofer Institute FIRST, while the
FTP traffic has been obtained from the public FTP server
of Lawrence Berkeley National Laboratory [8]. Addition-
ally, a total of 151 different attacks against HTTP and
FTP services have been recorded and intermixed with the
normal traffic. These attacks have been generated using
common hacking tool, such as Metasploit [7], and
for the sake of security, have been targeted against virtual
copies of the original services.

To assess the detection of unknown attacks, the
network traffic is randomly split into a known and un-
known partition during multiple experiments. Models
for anomaly detection are trained on the payloads of
the known partition only, whereas detection results are
only reported for the unknown partition. In this set-
ting, Sandy significantly outperforms related methods
and identifies 80–97% of the attacks in the unknown set
with less than 0.002% false positives. Neither the popular
intrusion detection system Snort nor state-of-the-art
methods for payload-based anomaly detection [5; 6; 16]
attain a similar accurate detection of unknown attacks.
Moreover, Sandy attains a throughput rate between
26–60 Mbit/s, although common speed-up techniques
such as multi-processing and hardware accelerations have
not been integrated yet.

As an example of this evaluation, Fig. 3 shows the
detection performance of Sandy and Snort as a ROC
curve, where the false-positive rate is given on the x-axis
and the detection rate on the y-axis for varying sensi-
tivity of the methods. Snort attains a flat curve which
saturates at 80% detection, despite a database of recent
detection patterns. In contrast, Sandy enables an almost
perfect identification of attacks with a false-positive rate
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Self-Learning Network Intrusion Detection ���

Figure 3 Detection performance (HTTP).

of 0.002%, although all attacks have been unknown during
the learning phase.

A comparison with methods for payload-based
anomaly detection [5; 6; 16] is presented in Fig. 4. The
detection performance is shown as AUC0.01 (the area
under the ROC curve from Fig. 3) for increasing fractions
of unknown attacks in the training data. On clean data,
several anomaly detection methods perform similarly to
Sandy. However, if only 0.5% of the training data con-
tains unknown attacks (one out of 200 normal requests)
the performance drastically drops for all methods except
Sandy. This compensation of unknown attacks can be
credited to the “soft margin” employed in the prototype,
which compensates attacks when learning the hyper-
sphere of normality. Although the sanitization of training
data may lessen the impact of unknown attacks [1], these

Figure 4 Robustness on contaminated data (HTTP).

results demonstrate that robustness is a critical prerequi-
site for learning-based intrusion detection.

5 Conclusions
In this article, we have studied a framework for self-
learning intrusion detection that enables effective and
efficient identification of unknown attacks. The frame-
work rests on two key concepts: the embedding of
network payloads in a vector space which provides
a universal link to machine learning and the geomet-
ric anomaly detection that enables identifying attacks as
deviations from normal communication independent of
manual crafted detection patterns. While self-learning in-
trusion detection does not generally eliminate the threat
of network attacks, it considerably raises the bar for ad-
versaries to get their attacks through network defenses.
In combination with existing security measures, such as
firewalls and intrusion prevention systems, it safeguards
today’s networks against future threats.

Moreover, the concept of geometrically analysing data
also proves beneficial in other areas of computer security.
For example, techniques presented in this article have
also been successfully applied for analysing the behavior
of malicious software [12] and detecting attacks against
web browsers [11]. With the increasing automatisation
of attacks and malicious software, these learning-based
approaches provide a promising ground for effective and
automatic defenses.
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