
Ingmar Schuster, Tammo Krueger, Christian Gehl, Konrad Rieck,
Pavel Laskov

FIPS: FIRST Intrusion Prevention System

FIRST Reports 1/2010

FIRST Reports
Herausgegeben von
Prof. Dr.-Ing. Stefan Jähnichen

c© Fraunhofer-Institut für Rechnerarchitektur und Softwaretechnik FIRST 2010

ISSN 1613-5024

FIRST Reports 1/2010

Alle Rechte vorbehalten.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Die FIRST Reports können bezogen werden über:

Fraunhofer-Institut für Rechnerarchitektur
und Softwaretechnik FIRST
Kekuléstraße 7
12489 Berlin

Tel.: ++49 (0)30 6392 18 00
Fax: ++49 (0)30 6392 18 05
E-Mail: first@first.fraunhofer.de
Internet: www.first.fraunhofer.de

FIPS: FIRST Intrusion Prevention System

Ingmar Schuster, Tammo Krueger, Christian Gehl, Konrad Rieck, Pavel Laskov

Fraunhofer Institute FIRST.IDA,
Kekuléstr. 7, 12489 Berlin, Germany,

E-mail: {sching,krutam,cgehl,rieck,laskov}@first.fraunhofer.de.

Abstract
Intrusion Prevention Systems try to actively disarm attacks on computer systems and networks.

In this work, we introduce the network based FIRST Intrusion Prevention System (FIPS) which is
capable of detecting novel attacks and contain them effectively. This inline device operates by redi-
recting anomalous packets to a specially hardened shadow system or logging them to a so-called
forensic sink for further examination. Both the offline and real life evaluation of the implementa-
tion shows that the system yields very high accuracy rates and is faster than comparable standard
solutions. Efficient retraining procedures are introduced to readjust the anomaly detectors after some
time of deployment to further boost the accuracy for real life tasks.

1 Introduction

As organizations rely on computer systems to carry out important business tasks, computer security is
constantly rising in importance. Computers are attacked over the internet as well as by local users who
misuse their privileges or attempt to gain additional privileges they are not supposed to have. Successful
attacks, also called intrusions, can compromise confidentiality, availability and integrity of computers
and networks. Intrusion Prevention Systems (IPSs) monitor events on a computer or network, auto-
matically analyzing them for possible attacks and trying to counteract. Having evolved from Intrusion
Detection Systems (IDSs), they enable organizations to protect their systems from known or even un-
known threats, depending on the attack detection techniques used.

This work describes the FIRST Intrusion Prevention System (FIPS), a network based IPS using
anomaly detection. Network based IPSs work by examining network traffic for possible attacks. If net-
work traffic is classified as an attack, an automatic procedure is triggered that tries to prevent the attack
from being successful. In this work, mechanisms are presented for attack detection and a reasonable
response. The attack detection method works by first modeling legitimate packet payloads and after-
wards comparing new payloads with this model. If the payloads do not fit the model, they are classified
as anomalous. This approach has the advantage that attacks that are yet unknown can potentially be
detected, simply because they do not fit the model of normality. The automatic response is two-part: if
the suspected attack occurs early enough in the connection, it is transparently redirected to a hardened
shadow system that takes special care to prevent attacks but does so at a computational cost. If the
suspected attack occurs later in the connection, all packets from the attacker are logged but not delivered.

The goals of this work are to implement and evaluate an industrial strength implementation of an
IPS in order to test previous work [5] in a real world environment. Therefore after introducing the basic
concepts and implementation details we focus on both the offline and real life evaluation of FIPS. We
give detailed accuracy results both for data collected offline and online during a period of 1.5 months.
Furthermore concepts for retraining the anomaly detector using data collected in the forensic sink are
evaluated. Runtime measurements of the system and an in-depth evaluation of the real life performance
of FIPS complete the experimental section. Related work and future directions of FIPS conclude the
paper.

1

!"#$%%$&

'$()$*&

+ , ! - , ! .

/012 /013 /031 /04/ /045 /013 /031

Figure 1: Sliding window procedure for payload “GET /ET” using 2-grams.

2 Implementation and Deployment

In this Section we introduce the foundations of the FIRST Intrusion Prevention System (FIPS): Based
on a solid anomaly detection framework described in Section 2.1 we give details about the integration
into the network infrastructure in Section 2.2. By introducing a so-called shadow system which mirrors
the monitored system but is specifically prepared to detect malicious behavior, we can alleviate the
effects of anomaly based detection mechanisms, namely the false positive rate. After discussing network
connection bookkeeping and packet redirection we conclude this section with details about our FIPS
deployment in a real life environment in Section 2.3.

2.1 Anomaly Detection

The anomaly detection method used is based on a model developed in [7]. The basic premise is that
attacks can be detected as deviations from a model of normal behavior. To build a normality model,
payloads are mapped to vectors by simply treating them as sequences of bytes. A sliding window of
length n is moved over the byte sequence, obtaining a so called n-gram at each position. An n-gram is
simply a subsequence of length n, where the set of all n-grams is

S = {0, . . . , 255}n.

A payload x can be embedded into vector space by simply determining for every n-gram s ∈ S whether
it is contained in the sequence x:

φ(x) = (contains(x, s))s∈S ,

where contains(x, s) is a function returning 1 iff s is contained in x, 0 otherwise. With this embedding
it is possible to normalize the vector to cancel out possible length dependencies. For example, in a
short payload most n-grams are very frequent and the resulting vector becomes long, while in a long
payload frequencies might be lower and the resulting vector short. A way to circumvent the effect is by
normalizing the vector to a length of one using a 2-norm:

φnorm(x) = φ(x)/||φ(x)||.

Index in vector 0x202f 0x2f45 0x4554 0x4745 0x5420

Value 1/
√
5 1/

√
5 1/

√
5 1/

√
5 1/

√
5

Table 1: Embedding for payload “GET /ET” using 2-grams and φnorm().

As an example, we embed the payload “GET /ET” using 2-grams and φnorm() as the embedding
function. From the sliding window procedure in Figure 1 we obtain the normalized vector in Table 1.
The 2-grams from the sliding window procedure are reused as indices for the corresponding component
in the embedded vector. All other components are set to 0.

2

Distance function d(x, z)

Euclidean
√∑

s∈S |φs(x)− φs(z)|2

Manhattan
∑

s∈S |φs(x)− φs(z)|

χ-Squared
∑

s∈S
|φs(x)−φs(z)|2
φs(x)+φs(z)

Canberra
∑

s∈S
|φs(x)−φs(z)|
φs(x)+φs(z)

Table 2: Distance functions for payloads.φs returns the value of the embedding vector for gram s.

In a vector space common vectorial distance functions can be applied. Packets with similar payloads
will share most n-grams and will be close to each other in vector space. Packets with dissimilar payloads
will share few n-grams and be far from each other in vector space, thus yielding high distance values.
It is not viable however to compute vectors and distances explicitly, because for n = 4 the vector
space already has over 4.2 billion dimensions. Taking advantage of the fact that the number of n-grams
contained in a single payload is linear in length, efficient methods for extraction and comparison of
vectors have been developed in [9]. These methods are used with the distance measures in Table 2.1
throughout the paper.

We use the model of normality developed in [5] which in turn is based on earlier work on the usage of
anomaly detection for intrusion prevention [8, 12, 13]. This model, called the centroid model, assumes
normal data to be close to a center of normal payload embeddings. The model is computed using a
simple algorithm:

1. Training: collect samples of normal data packets X = {x1, . . . , xn} and compute their mean
µ = 1

n

∑n
i=1 φ(xi). Now µ can be thought of as the center of a sphere in a |S|-dimensional vector

space.

2. Validation: determine the anomaly threshold tan from an independently collected sample Y =
{y1, . . . , ym} of normal data packets. Set tan so that the ratio of packets yi for which the distances
d(µ, yi) with d(µ, yi) > tan is less or equal to a predefined anomaly rate. tan corresponds to the
radius of a sphere in an |S|-dimensional vector space.

3. Detection: We define the detection function

anomaly(y) =

{
true if d(µ, y) > tan

false otherwise

for a payload y. This function returns true if a packets vector space embedding lies in the sphere
and is considered normal or false otherwise.

2.2 Network Infrastructure

One of the main ideas used in our network IPS is to compensate false alarms in anomaly detection with
an automatic response which results in almost no limitations for legitimate users. This approach was
first developed in [5]. It works by combining a network based information source, an analysis engine
and a response device on a system acting as a firewall-like router. Traversing this router is the only
way a client can send requests to a server which is to be protected from attacks. When the IPS detects
an anomaly in the first payload of a connection, it suspects an attack and redirects the connection to a
hardened shadow server (Figure 3). The shadow server provides the same services as the production
server but runs additional software for intrusion prevention that slows it down. If the first payload is

3

Centroid Model of Normality

Figure 2: The centroid model of normality can be seen as a sphere in the vector space that packet payloads
are embedded in. Normal packets lie in the sphere, anomalous packets outside of it.

External Network

FIPS

Secure Zone

Internal
Network

Production
System

Shadow
System

Figure 3: Network setup with the IPS acting as a firewall-like router. Normal connections are routed to
the production system, most anomalous connections to the shadow system.

not anomalous, but a subsequent one is, the TCP flow is logged to a forensic sink from that point on.
Packets are still acknowledged at the transport layer so that as much malicious traffic as possible can be
collected, but packets are not forwarded anymore. The forensic sink can later be used for fine-tuning
anomaly detection, for example by retraining the centroid model from Section 2.1 with additional data.

This approach has several advantages. Because the IPS is the only router through which servers are
reachable, it can contain attacks directed at many different servers. The current implementation supports
many combinations of production and shadow server, limited only by restrictions in the operating system
kernel1. The configuration of the IPS is trivial and does not interfere with the workings of a server
(however session synchronization is an issue, if we monitor stateful applications). The deployment of
the IPS results in no additional load for the protected servers. Also, as the IPS acts solely as a router, an
attacker will have difficulty detecting its existence. Because even connections regarded as anomalous in

1These stem from the necessity to queue packets into user space, where each queue has to be uniquely identifiable. For this
purpose the Linux kernel uses an unsigned 16 bit integer, resulting in a maximum of 65 535 combinations of production and
shadow server.

4

INIT

SEEN FORENSIC_SINK

REDIRECT_AWAIT_ACK REDIRECT

[1st payload
anomalous]

[1st payload OK]

[ACK from
shadow system]

[Payload anomalous]

[More data]

[Connection closed]

[More data]

[Payload OK]

Figure 4: Routing state diagram as developed in [5].

many cases are served by a shadow server, the drawback of anomaly detection based analysis, namely
producing false positives, is highly alleviated. Even if a legitimate connection is seen as anomalous, the
client will not notice this other than its connection being slower than normal.

Each connection is associated with a routing state which specifies the actions that are taken for
packets belonging to the connection. The routing state machine is given in Figure 4. A connection
starts in the INIT state. This state is altered when seeing the first packet with payload. The anomaly()
function from Section 2.1 is used to decide how a packet is handled. If it is anomalous, the packet is
redirected to the shadow server. If the packet is normal, the connection status is changed to SEEN and
the IPS delivers the packet to the production system.

If the IPS later encounters an anomalous packet in a connection in SEEN state, the state is changed
to FORENSIC SINK and all packets are logged to the forensic sink without being forwarded. Packets
are acknowledged however in order to collect more data of the suspected attack. While in principle it
would be possible to redirect the connection to the shadow server at this point, it would increase the
memory usage of the IPS immensely. Because a client request could be distributed over several TCP
packets, every packet would have to be stored before forwarding it to the production server. Only this
way packets could be replayed when a redirection to the shadow server becomes necessary because of an
anomalous packet. Also some protocols make redirection from a certain point on very difficult. Because
the case of an anomalous packet in the middle of a connection is rare the effort would be unjustified.

If the first packet payload is anomalous, redirection can be done much cheaper. The packet is
dropped and the TCP connection to the production server is teared down by the IPS by injecting a
RST packet. The IPS then injects a SYN packet to the shadow server and sets the connection state to
REDIRECT AWAIT ACK . This state is kept until the shadow server sends a SYN/ACK packet. When
the client retries to send the first packet with payload because it never received an ACK , the packet is
redirected to the shadow server. A sequence diagram of the process is given in Figure 5. To make the
redirection transparent, acknowledgment numbers have to be translated from the old connection that the
client still thinks is active to the new connection and vice versa.

Let y be the old, z be the new acknowledgment number. Then the IPS stores d = z−y and translates
client packets to the new connection by adding d to their acknowledgment number, while subtracting d
from the acknowledgment number of server packets to translate them to the old connection.

Because packet redirection has to be transparent to both client and shadow server, each of the fol-
lowing packets has to be rewritten. The production servers IP address and port are rewritten to those of
the shadow server. In addition the sequence and acknowledgment numbers are rewritten to match those

5

Figure 5: Sequence diagram for the redirection process [5]. If the first packet with a payload is classified
as anomalous (in the diagram: An. Payl.), the connection to the production server is reset by the IPS and
a new connection to the shadow server is established.

of the new connection (for a packet coming from the client) or those of the old connection (for a packet
coming from the shadow server), respectively. When the connection is closed, the routing state machine
reaches its final state. All information belonging to the closed connection is freed.

2.3 Real Life Deployment

For the integration in our real live environment we have to adjust the setup as introduced in Figure 3:
Since the DMZ of our institute is not equipped with an internal router or firewall, we incorporate both
the routing and destination NAT inside our FIPS system as depicted in Figure 6. The rationale here is
to do Network Address Translation (NAT) from a given externally visible IP address to a newly created,
internal network, in which both the production and the shadow server reside.

The FIPS system is the default router for the internal network and also in charge for the NATing of
the addresses. We implement a “software” NATing mechanism inside FIPS, since the standard NATing
of netfilter interferes with our redirection mechanism. Because NATing with netfilter tracks connections
inside the Linux kernel, once we start our redirection mechanism the kernel is sending RST-packets to the
shadow system because the connection is not known to the kernel. While it is theoretical possible to add
these connections to the Linux connection tracking table via the libconntrack, we opted for implementing
NAT in FIPS itself for the sake of simplicity.

We use a Squid Proxy as production system and a fully equipped ModSecurity system installed in
reverse proxy mode as shadow system. Both systems mirror the web content of servers located inside
the internal network. The request from production and shadow system to the internal servers are also
routed by FIPS (as depicted by the dashed lines), which adds an additional load to FIPS but allows for
a seamless and easy integration into the existing infrastructure. Results of the evaluation in this real
environment are discussed in Section 3.4.

3 Evaluation

In the following section we evaluate FIPS first on pre-collected datasets and examine how the data logged
to the forensic sink can be used to efficiently update the anomaly detector. Furthermore we give details

6

External Network

FIPS
(Routing + DNAT)

Secure Zone (New Subnetwork)

Internal Network

Production
System
(Squid)

Shadow
System
(ModSecurity)

Figure 6: Network setup used in the real life evaluation. Certain adjustments compared to the general
setup had to be applied to seamlessly integrate FIPS into the existing infrastructure. See text for details.

Dataset Selected Model anomaly rate real FP TP
FIRST 2007 4-grams bin. Canberra 0.1 0.0037 0.9583
Blog 2009 3-grams bin. χ-Squared 0.1 0.0151 0.7361

Table 3: Accuracy rates for the complete datasets.

about the runtime performance of FIPS and compare it to the prominent open-source IPS SNORT. This
sections concludes with the evaluation of the real life deployment of FIPS.

3.1 Offline Evaluation

For our first evaluation of FIPS we collected two datasets: The FIRST 2007 dataset contains roughly
500k packets gathered during 21 consecutive days at our institute’s web server. The server contains
both static and dynamic content hosted by the web content management system OpenWorx. The Blog
2009 dataset contains roughly 1500k packets gathered during 35 consecutive days at a domain running
several WordPress blog instances. In addition we assembled a pool of recent attacks as detailed in the
appendix in Table 5. Each of these datasets are splitted in 3 equally sized parts, which form the training,
validation and testing pool. The training and validation pool are used to perform model selection: For
each of the distance of Table 2.1 and all n-grams with n ∈ {2, 3, 4} and the predefined anomaly rates
of {0.01, 0.05, 0.1} we calculate the respective centroid and thresholds as described in Section 2.1 and
choose the best model in terms of area under the Receiver Operating Characteristic (ROC) curve. This
model is then evaluated on the testing pool: Each legitimate packet redirected to the forensic sink is
counted as a false positive while each attack entirely delivered to the production system is counted as a
false negative.

The results are denoted in Table 3. While the FIRST 2007 dataset is accurately handled by FIPS,
both in terms of false positives and true positives, the methods seems to break down on the Blog 2009
dataset: the relatively high number of false positives of roughly 1% is accompanied by a surprisingly low
number of true positives compared to the FIRST 2007 dataset.

As Table 3.1 reveals, these findings are due to the mixture of several subdomains inside the blog
dataset: If we split the dataset according to their respective subdomains, we get a much more diverse
picture: While most of the domains are now accurately captured by FIPS, some are entirely broken. If

7

Domain Selected Model anomaly rate real FP TP # packets
doXXX 4-grams bin. norm. Euclidean 0.1 0.00652 1.00000 3836
fiXXX 2-grams bin. χ-Squared 0.1 0.00305 0.58333 5894
frXXX 3-grams bin. norm. Manhattan 0.1 0.01749 0.93056 96973
huXXX 4-grams bin. Canberra 0.1 0.02340 0.90278 8204
jaXXX 4-grams bin. Canberra 0.1 0.15953 0.75000 17639
niXXX 4-grams bin. Canberra 0.1 0.04057 0.81944 10402
riXXX 2-grams bin. Euclidean 0.1 0.05299 0.87500 6700
saXXX 4-grams bin. Euclidean 0.1 0.04883 0.76389 8090
svXXX 4-grams bin. Canberra 0.1 0.05294 0.83333 21554
ttXXX 4-grams bin. Canberra 0.1 0.00133 0.98611 2251
tiXXX 2-grams bin. χ-Squared 0.1 0.01181 0.90278 269402

Table 4: Accuracy rates for the individual subdomains of the Blog 2009 dataset.

we look at the number of packets we have collected for each subdomain, we see that several datasets
are below 100k packets. The two datasets containing enough packets for stable estimates (frXXX and
tiXX) show almost the same performance, which is a good indicator for the real performance of FIPS
on this dataset. In an additional analysis, we focus on the tiXXX subdomain, since it has the highest
number of packets. Note that for all datasets the models with a predefined anomaly rate of 0.1 have
been selected, but almost all of them exhibit a much smaller real false positive due to the redirection
mechanism employed in FIPS.

3.2 Retraining with Sink-data

While FIPS is capable of providing a sufficient protection against a wide range of attacks, it also gen-
erates a some false positives. Each of these result in a corrupted or even totally broken connection for
a legitimate user request. Therefore we need a simple, yet efficient method for improving the anomaly
detector during the life time of a FIPS installation. Since FIPS collects all the packets resulting in false
positives inside the forensic sink, it is natural to exploit this data pool for the task at hand. After cleaning
the forensic sink data from real attacks, we propose a weighted mean scheme formalized in the following
equation:

µα =
(1− α)Nµtrain + αMµsink

(1− α)N + αM
,with

µtrain =
1

N

N∑
i=1

φ(xtrain,i) and

µsink =
1

M

M∑
i=1

φ(xsink,i),

where µsink and µtrain are the means when using only the train or sink data respectively. The parame-
ter α controls how much weight the new, formerly dropped packets are given in updating of the centroid:
α = 0 just returns the normal centroid based on the train pool, while α = 1.0 results in a sink-only
centroid. The case α = 0.5 corresponds to the overall centroid on the merged train and sink pool. Every
setting in between these gradually gives more weight to the train (α < 0.5) or the sink data (α > 0.5).

For the evaluation of this retraining procedure we update the original centroid with the sink data given
a specific value of α. We then test the performance of this updated centroid on the remaining test data.
To get reliable estimates and error bars we repeat this procedure 10 times with different slices of the data.
The resulting absolute decrease of the false positives rates for different values of α is depicted in Figure

8

0.01 0.02 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.98 0.99

alpha

ab
so

lu
te

 d
ec

re
as

e
in

 F
P

0.
00

00
0.

00
02

0.
00

04
0.

00
06

0.
00

08
0.

00
10

0.01 0.02 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.98 0.99

alpha

ab
so

lu
te

 d
ec

re
as

e
in

 F
P

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Figure 7: Decrease of false positive rates of the normal centroid versus the sink-adjusted centroid for the
FIRST 2007 and tiXXX subdomain of the Blog 2009 dataset with varying α. Error bars give the 95%
confidence interval based on the standard error.

3.2. For both datasets we see a continuous improvement with increasing α of up to 0.8% for the tiXXX
subdomain of the Blog 2009 dataset. But at least for the tiXXX subdomain this comes at a price: As
Figure 3.2 reveals, the true positive rates also decrease which results in more succesfull attacks. Fixing α
to a value of 0.95 gives a good compromise between decrease of false positive rate and decrease of true
positives for both datasets. However an attacker could try to exploit this update procedure to manipulate
the centroid. This matter is further discussed and analyzed in [3], where bounds are given for how much
of the traffic the attacker has to control, to really exploit the update procedure.

3.3 Runtime Evaluation

For the runtime evaluation we use Tcpreplay. With Tcpreplay collected real traffic can be replayed over
a given network device. This enables very realistic performance measurements. In order to use Tcpre-
play, incoming and outgoing HTTP traffic was collected at a web server at Fraunhofer FIRST during
25h in 2007. For SNORT and binary embedding with differing n-gram size for anomaly detection the
traffic was replayed and points of the characteristic curves recorded, which is shown in Figure 3.3. The
plots show forwarded traffic speed as a function of incoming traffic speed. With decreasing n, the point
at which packet loss occurs is delayed. After the system loses packets the forwarding speed stays more
or less constant.

For FIPS we define the maximum forwarding rate using f : N → N, i 7→ f(i) as the forwarding
function which maps incoming speed to forwarding speed. For measurement points {i1, . . . , in}, f(il)
is the maximum forwarding rate iff f(ik) = ik for all k ≤ l and f(il+1) < il+1. In other words,
the maximum forwarding rate is defined as the last measured forwarding rate before packet loss occurs.
SNORT shows packet loss at every nominal replay speed. Packet loss was not constant even for low
replay speeds, which makes it unlikely that the reason was truncated connections or a setup error on
our part. Because of the packet loss the maximum forwarding speed for SNORT was defined as the
forwarding speed at the first local maximum point (last measured forwarding speed before the speed
decreases for the first time with increasing input speed). This definition sometimes could give higher
maximum forwarding speed then the more rigid definition used for FIPS. Thus it could overestimate

9

0.01 0.02 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.98 0.99

alpha

ab
so

lu
te

 d
ec

re
as

e
in

 T
P

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.01 0.02 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.98 0.99

alpha

ab
so

lu
te

 d
ec

re
as

e
in

 T
P

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Figure 8: Decrease of true positive rates of the normal centroid versus the sink-adjusted centroid for the
FIRST 2007 and tiXXX subdomain of the Blog 2009 dataset with varying α. Error bars give the 95%
confidence interval based on the standard error.

0 50 100 150 200

0
50

10
0

15
0

20
0

Speed incoming traffic (Mbit/s)

S
pe

ed
 o

ut
go

in
g

tr
af

fic
 (

M
bi

t/s
)

SNORT
FIPS (2−grams)
FIPS (3−grams)
FIPS (4−grams)

Figure 9: Characteristic curves Snort vs. FIPS

10

(All) % (All) # (Sink) % (Sink)
Packets (Cookie) 807815 30.71 9756 81.52

Packets (non-Cookie) 1822731 69.29 2211 18.48

Table 5: Absolute and relative numbers of packets inside the overall and the sink pool, which originate
from a HTTP request containing a cookie. Cookie-related packets are overrepresented inside the sink.

SNORTs performance. Still, for instance the optimal parameter combination of the FIRST 2007 dataset,
binary embedding with 2-grams, the anomaly detection based IPS performs at a maximum forwarding
speed of 117 Mbit/s, while SNORTs maximum forwarding speed is only 102 Mbit/s.

3.4 Online Evaluation

After setting up FIPS as described in 2.3, we evaluated the system for a period of 1.5 month. The
system was up and running during the complete period without any software failures. We captured
roughly 2,500k packets in total, of which 68.10% were delivered to the production system, 31.45% were
delivered to the shadow system and 0.45% were logged to the forensic sink.

The shadow system captured roughly 2,000 packets of malicious communication mainly originating
from scanners. None of these traffic patterns could be observed on the production system, showing that
FIPS efficiently encapsulated the attempted attacks.

While the number of packets delivered to the forensic sink is quite low and we already introduced
a method in Section 3.2 to lower this value even more, closer inspection of this data might give further
insight. Table 3.4 shows the absolute and relative numbers of packets inside the overall and the sink
pool, which originate from a request containing a specific cookie from the content management system
OpenWorx. We clearly see that the cookie-related packets are overrepresented inside the forensic sink
compared to the overall ratio. This might hint at a slight deficiency of the anomaly detector if the request
at hand contains a cookie which often involves large parts of random structure.

To conclude the analysis we have a further look at the length distribution of packets inside the forensic
sink, which are not cookie-related. The comparison to the overall length distribution of non-cookie-
related packets are shown in Figure 3.4. The distribution of the sink data clearly shows a peak in the
lower and upper range of the length, which cannot be observed in the overall distribution. This might
indicate a weakness of the anomaly detector for overly small or big packet payloads. We discuss possible
remedies in the conclusions.

4 Related Work

The most prominent open-source intrusion prevention system is SNORT which has a built-in inline mode.
By using the SNORT engine on packets queued to the user space with the libipq library, SNORT inline
decides per packet whether it should be dropped or delivered to the network. Another well known open-
source intrusion prevention system specialized on monitoring HTTP traffic is the ModSecurity platform.
Operated as a reverse proxy ModSecurity is capable of blocking traffic on a signature based negative
security model and also on a positive security model, which basically enumerates allowed traffic. Both
systems however lack an anomaly-driven decision mechanism apart from a simple dropping procedure.

A crucial prerequisite for inline intrusion prevention is the ability to perform the intrusion detection
part extremely fast. Therefore the SafeCard IPS [2] was implemented directly on a network card. The
SafeCard architecture performs deep packet inspection doing full TCP re-assembly with a cascade of
test modules of increasing complexity. Having signature based payload inspectors the architecture how-
ever lacks an anomaly detection component for the detection of novel, unknown attack vectors. Other
approaches exploiting modern GPU architectures for fast packet processing are the Gnort system [11],

11

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Length of Packet Payload

D
en

si
ty

All Packets
Sink Packets

Figure 10: Length Distribution of non-cookie-related packets of all packets compared to the packets
logged to the forensic sink.

which shifts performance critical parts of the signature matching algorithm to the GPU by performing
multiple matching processes in parallel.

Valeur et al. [10] applied anomaly detection techniques combined with intrusion prevention mecha-
nisms in the specific context of web applications and clients: A reverse HTTP proxy architecture is used
to forward requests to servers running under different privileges by exploiting anomaly scores obtained
from a WebAnomaly sensor [4]. In line with this work the “shadow honeypot” architecture proposed
by [1] redirects suspicious traffic to a specially adjusted application. This instrumentation is achieved
using a source-to-source translator and is therefore limited to applications, where the actual source code
is available.

The concept of shadow systems have been introduced in [12]. In [6] this is applied concept to the
virtualization domain and presents a system which could handle both the production and the shadow
system in one virtual environment. Primarily developed as a secure system to actively monitor systems,
it could be used in our setup to lower the cost induced by the redirection process. If both the production
and the shadow system are managed by the same hypervisor, special shortcuts for the redirection process
could be implemented.

5 Conclusion and Further Work

In this paper we have introduced the anomaly-based network intrusion system FIPS. Our offline and
online evaluation shows that our system is ready for real life deployment. An efficient update procedure
for an already deployed system demonstrates the ability of FIPS to further adapt to errors and improve
the overall performance of the system.

Results of our real life installation are promising but also show room for improvement: While the
overall false positive rate is in an acceptable range, packets logged to the forensic sink show some distinc-
tive features which could be exploited in an enhanced version of FIPS. For instance one could imagine
a specifically crafted model for requests with cookies to eliminate the relative high number of cookie-
related packets inside the forensic sink. Furthermore special heuristics could be employed when dealing
with very small packets, to eliminate some more packets erroneously logged to the forensic sink.

12

While there are still open problems in an all-day use this paper has shown that anomaly based detec-
tion combined with clever redirection mechanisms and retraining methods can yield fast, efficient and
up-to-date protection for inline network protection.

References

[1] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D. Keromytis.
Detecting targeted attacks using shadow honeypots. In Proc. of USENIX Security Symposium,
pages 129–144, 2005.

[2] W. de Bruijn, A. Slowinska, K. van Reeuwijk, T. Hruby, L. Xu, and H. Bos. Safecard: a gigabit
IPS on the network card. In Recent Adances in Intrusion Detection (RAID), pages 311–330, 2006.

[3] M. Kloft and P. Laskov. A poisoning attack against online anomaly detection. In NIPS Workshop
on Machine Learning in Adversarial Environments for Computer Security, 2007.

[4] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection for network intrusion detec-
tion. In Proc. of ACM Symposium on Applied Computing, pages 201–208, 2002.

[5] T. Krueger, C. Gehl, K. Rieck, and P. Laskov. An architecture for inline anomaly detection. In
Proc. of European Conference on Computer Network Defense (EC2ND), pages 11–18, 2008.

[6] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture for secure active moni-
toring using virtualization. In Proceedings of the IEEE Symposium on Security and Privacy, pages
233–247, 2008.

[7] K. Rieck and P. Laskov. Detecting unknown network attacks using language models. In Detection
of Intrusions and Malware, and Vulnerability Assessment, Proc. of 3rd DIMVA Conference, LNCS,
pages 74–90, July 2006.

[8] K. Rieck and P. Laskov. Language models for detection of unknown attacks in network traffic.
Journal in Computer Virology, 2(4):243–256, 2007.

[9] K. Rieck and P. Laskov. Linear-time computation of similarity measures for sequential data. Jour-
nal of Machine Learning Research, 9(Jan):23–48, 2008.

[10] F. Valeur, G. Vigna, C. Kruegel, and E. Kirda. An anomaly-driven reverse proxy for web applica-
tions. In Proc. of the 2006 ACM symposium on Applied computing, pages 361–368, 2006.

[11] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos, and S. Ioannidis. Gnort: High per-
formance network intrusion detection using graphics processors. In Recent Adances in Intrusion
Detection (RAID), 2008.

[12] K. Wang, J. Parekh, and S. Stolfo. Anagram: A content anomaly detector resistant to mimicry
attack. In RAID, pages 226–248, 2006.

[13] K. Wang and S. Stolfo. Anomalous payload-based network intrusion detection. In RAID, pages
203–222, 2004.

13

Name Attack type CVE Published
Buffer overflow attacks
iis htr Buffer overflow 1999-0874 June 1999
iis printer Buffer overflow 2001-0241 May 2001
idq isapi Buffer overflow 2001-0500 June 2001
apache chunked Buffer overflow 2002-0392 June 2002
altn webadmin Buffer overflow 2003-0471 June 2003
ia webmail Buffer overflow 2003-1192 November 2003
icecast header Buffer overflow 2004-1561 September 2004
iis w3who Buffer overflow 2004-1134 December 2004
iis rsa webagent Buffer overflow 2005-4734 October 2005
peercast url Buffer overflow 2006-1148 March 2006
novell messenger Buffer overflow 2006-0992 April 2006
shttpd post Buffer overflow 2006-5216 October 2006
novell edirectory Buffer overflow 2006-5478 October 2006
Code injection attacks
awstats Shell code injection 2005-0116 January 2005
php vbullentin PHP code injection 2005-0511 February 2005
php xmlrpc PHP code injection 2005-1921 June 2005
barracuda Perl code injection 2005-2847 September 2005
php pajax PHP code injection 2006-1551 April 2006
apache modjk Binary code injection 2007-0774 March 2007
php inject PHP code injection — *
sql inject SQL code injection — *
WordPress attacks
crlf injection response splitting 2004-1584 December 2004
cat id variable SQL injection 2005-1810 June 2005
cache lastpostdate cookie PHP code injection 2005-2612 August 2005
redirect to Cross-site scripting 2007-1599 March 2007
DMSGuestbook Directory traversal 2008-0615 February 2008
Spreadsheet SQL injection 2008-1982 April 2008
media holder SQL injection 6842milwOrm October 2008
Page Flip Image Gallery Directory traversal 2008-5752 December 2008
fMoblog SQL injection 2009-0968 March 2009
wordpress mu Cross-site scripting 2009-1030 March 2009
Miscellaneous attacks
httptunnel HTTP tunnel — March 1999
shoutcast Format string 2004-1373 December 2004
php unserialize Integer overflow — March 2007
xss Cross-site scripting — *

Table 6: Table of 35 exploits. Each attack is executed in different variants. A description of the attacks
is available at the Common Vulnerabilities and Exposures (CVE) web site. Attacks marked by * are
artificial and have been specifically created for the data set.

14

