
An Architecture for Inline Anomaly Detection

Tammo Krueger, Christian Gehl, Konrad Rieck and Pavel Laskov∗

Fraunhofer Institute FIRST
Intelligent Data Analysis, Berlin, Germany

{krutam,gehl,rieck,laskov}@first.fraunhofer.de

Abstract

In this paper we propose an intrusion prevention system
(IPS) which operates inline and is capable to detect un-
known attacks using anomaly detection methods. Incor-
porated in the framework of a packet filter each incoming
packet is analyzed and – according to an internal connec-
tion state and a computed anomaly score – either delivered
to the production system, redirected to a special hardened
system or logged to a network sink for later analysis. Run-
time measurements of an actual implementation prove that
the performance overhead of the system is sufficient for in-
line processing. Accuracy measurements on real network
data yield improvements especially in the number of false
positives, which are reduced by a factor of five compared to
a plain anomaly detector.

1. Introduction

Why are intrusion detection systems (IDS) still struggling
for their acceptance in everyday practice? From the concep-
tional perspective, their main practical challenge is not how
to detect attacks, but rather: how to act upon the detected
events? From a technical perspective, the main challenge
is wire speed. The entire decision-making has to match
high traffic rates, which will show no signs of ever going
down in the future. Putting these two requirements together,
one realizes the need to develop inline intrusion prevention
systems (IPS) – the ones that act as intelligent firewall-like
black-boxes deployed in the main traffic path and deliver a
“guaranteed protection” against all sorts of evil.
Departing from this science-fiction-like picture, one should
note that among the two main classes of IDS – misuse and
anomaly detection – inline methods for misuse detection
have received considerable attention in recent work. Ar-
chitectures for high-performance signature-based IDS with

∗Pavel Laskov is also affiliated with University Tübingen, Wil-
helm-Schickard-Institute for Computer Science, Tübingen, Germany.

inline capabilities have been proposed using FPGAs [2, 5],
network [3] or graphics processors [7, 18]. Signature-
based systems, however, fail to provide adequate protection
against novel attacks, such as zero-day exploits and rapid
worm outbreaks, since signatures have to be supplied and
installed before the detection of new attacks is possible.
Anomaly detection methods fill this gap and enable the de-
tection of truly novel attacks. Previous work has addressed
anomaly-based intrusion prevention for specific scenarios,
such as web applications and clients [1, 17]. The main con-
tribution of this article is, in contrast, a service-independent
architecture in which decision-making is performed at the
network layer in the TCP/IP stack whereas anomaly detec-
tion runs at the application layer. Using advanced packet
content analysis techniques [19, 15], our system is applica-
ble to any network services.
The goal of our system is not only to crank a high num-
ber of bytes per second, but also to investigate protection
mechanisms feasible for integration with anomaly detec-
tion techniques. We attempt to balance the imperfect de-
tection in anomaly-based IDS by a judicious choice of re-
sponse mechanisms. Specifically, our design currently in-
volves three actions chosen according to assigned anomaly
scores: (1) forwarding to a production system, (2) redirec-
tion to a hardened system (shadow system), and (3) redirec-
tion to a monitored network sink (forensic sink). The sys-
tem architecture and implementation details of these instru-
ments are provided in Section 2, followed by the description
of anomaly detection algorithms in Section 3 and the exper-
imental evaluation in Section 4. A comparative discussion
of the proposed architecture and alternative approaches is
provided in Section 5.
At this stage in the development, certain shortcuts had to be
taken in order to reduce the complexity of our system, for
the sake of the first feasibility test. We have considered nei-
ther TCP re-assembly nor connection-level payload analy-
sis and protocol parsing. These techniques could potentially
improve the accuracy of our system, although they would
require some re-thinking of response mechanisms. Another
conscious decision was not to deploy any special accelera-

tion mechanisms for high-speed performance, such as net-
work or graphics processors. Yet even the current “vanilla
C” software implementation shows that the proposed ar-
chitecture can fulfill performance requirements of medium-
scale server systems. We focused on stateless services so
that no synchronization mechanism between the production
and the shadow system is necessary. Future work will ad-
dress most of the currently taken compromises.

2. Architecture and implementation

The general architecture of our inline IPS follows the well
known concept of a packet filter running in kernel mode
and making decisions on individual packets. We enhance
this concept with an anomaly detection unit running in user
mode and supplying the packet filter with scores in real
time. The packet filter maintains an internal detection state
for TCP flows (not to be confused with a connection state)
allowing it to keep track of some limited TCP context. The
detection state also incorporates some dependencies on a
history of previous anomaly scores for each flow. Based on
the current anomaly score and the detection state, the filter
decides whether a packet is forwarded to a production sys-
tem, redirected to a hardened shadow system or dumped to
a special log file, the so-called forensic sink.

2.1. System architecture

The basic architecture of our system is presented in Figure
1. The packet filter is deployed on a central router or bridge
to ensure that no packet bypasses its decision.
The filter delivers each incoming packet to a service spe-
cific connection handler, which requests a special trained
anomaly detector (see Section 3 for details) to score its pay-
load. Based on the anomaly score and its detection state
machine – to be described in more detail in Section 2.2 –
the packet is either delivered to the production system or
redirected. The basic decision making mechanism proceeds
as follows:

• If the anomaly score is below a pre-defined threshold,
the packet is forwarded to the production system.

• If the first packet with payload receives a score exceed-
ing the threshold, the flow is redirected to a shadow
system. The shadow system provides the same ser-
vices as a production system but is equipped with addi-
tional, possibly computationally expensive instrumen-
tation for preventing a successful attack.

• If a subsequent packet receives a score above the
threshold, the flow is redirected to a forensic sink. No
action at the application layer is taken in the forensic

Packet Filter

Connection handler

Forensic sink

Production system

Detection State Machine

Shadow system

Anomaly detector

Redirector

Figure 1. Overview of the inline anomaly de-
tection architecture.

sink, however, packets are acknowledged at a trans-
port layer in order to receive as much malicious traffic
as possible. The main purpose of a forensic sink is to
obtain data for fine-tuning anomaly detection, e.g. by
means of generating attack signatures, whitelisting or
retraining.

Once a flow is redirected, all packets are forwarded to the
designated system regardless of their scores.

2.2 Detection states

The detection state machine lies at the core of the proposed
inline anomaly detection architecture. It enables the system
to accumulate information for a connection beyond that of
a single packet. The states and transitions of the detection
state machine are presented in Figure 1.
Each connection starts in the INIT state. After receiving
the first packet with payload, the anomaly detector calcu-
lates an anomaly score and decides whether this packet is
anomalous. If this packet is normal, the connection status is
toggled to SEEN and the corresponding packet is delivered
to the production system. If this packet is anomalous, the
system redirects the packet to the shadow system.
The SEEN state is kept as long as all the following packets
are tagged as normal by the anomaly detector. If any sub-
sequent packet of the connection is anomalous, the detec-
tion state is changed to FORENSIC SINK and from now
on all packets of this connection are logged to the foren-
sic sink. The packets are not delivered; solely an ACK for
each packet is sent to harvest more data. Redirection to a

shadow system is no longer an option at this point, since
some packets have already been delivered to the production
system and cannot be recovered any more by the packet fil-
ter. The initial connection to the production system is ter-
minated with a RST.
The redirection of a connection to the shadow system re-
quires some structural overhead. The system has to tear
down the initial connection to the production system and
has to establish a new connection to the shadow system.
Several parts of the redirected packets both from the client
and from the server side (source or destination address and
port, sequence or acknowledgement number) have to be ad-
justed accordingly. The main steps involved in the redirec-
tion are shown in Figure 2.
After resetting the initial connection our system establishes
a new connection to the shadow system. Having received
the SYN/ACK for the new connection, our system can
translate all packets for this connection using the new se-
quence number obtained from the shadow system. The
client side is not able to notice any difference in the trans-
mission except for a small delay1.
This redirection mechanism is reflected via two distinct
states in the detection state machine: if the first packet with
payload is anomalous, the corresponding connection is tog-
gled to the REDIRECT AWAIT ACK state. The anomalous
packet is dropped and our system establishes a new connec-
tion to the shadow system as described above. After the sys-
tem receives the SYN/ACK of the shadow system, the cor-
responding connection is switched to the REDIRECT state,
since the translation of the packets is now possible due to
the received sequence number of the new connection.
In the REDIRECT state each packet is translated as follows:
if the packet originates from the client, the destination ad-
dress and port is replaced with the respective values for the
shadow system. The acknowledgment number is adjusted
to match the sequence number of the new connection. If the
packet originates from the shadow server, both the source
address and port as the sequence number are changed to the
corresponding values of the old connection.
After a connection is closed, the detection state machine
reaches its final state. So regardless of the preceding state
the corresponding connection information is freed in our
system, after a connection ends.

2.3. Implementation

In order to perform anomaly detection inline, the system
must be able to intervene, i.e. decide for every packet if it
is delivered or not. The classical solution for this task is a
packet filter. Unfortunately, the packet filter operates in the
system’s kernel space, which makes it difficult to develop

1Note that we could circumvent potential detection of this feature by
randomly adding small delays to all connections.

new extensions. It is therefore desirable to have a mech-
anism for queueing selected packets to the user space, in
order for a user process to decide the fate of a packet.
The de facto standard packet filter framework for the Linux
system Netfilter offers exactly such a solution with
the libnetfilter queue library: all packets match-
ing a specific Netfilter rule are queued to a user space
process which receives the packet via a dedicated socket.
Netfilter expects a packet to get a so-called verdict,
which determines how the packet is processed by the packet
filter (ACCEPT, DROP, REPEAT). The packet itself can
also be modified by the user process down to the IP layer.
For the redirection of packets the Netfilter framework
offers the DNAT target, which implements a destination
network address translation mechanism. Unfortunately the
DNAT target realizes just a “simple” redirect, which begins
with the arrival of the first SYN packet and is then carried
on automatically without the possibility of a user space pro-
cess intervention. Since our redirection mechanism poten-
tially kicks in only after we have received the first packet
with payload, the DNAT target cannot be used for the im-
plementation of our scheme.
Fortunately the libnetfilter queue allows one to
modify the packet content before reinjecting it into the net-
work. Manipulating the address, port and sequence num-
bers as described in the previous section is straight forward.
After the manipulation one has to recalculate both the IP
and the TCP checksum, otherwise the injected packet would
be dropped by the network.
The additional communication involved in the redirection
and logging to the forensic sink (sending of RST/SYN/ACK
packets) is implemented via the libnet library which pro-
vides an easy interface to packet creation and delivery.
To test our architecture we have implemented a prototype
which can be configured to execute single actions from
our scheme. We can thus measure the performance impact
of each single action (forwarding, calculation of anomaly
score, redirection, logging to forensic sink).
This prototype is deployed on a recent Debian system
acting as a central router between a client system and the
production / shadow system. Both the production and the
shadow system are hosted on a recent OpenBSD system.
We choose Apache as service and the corresponding test-
ing tool Flood2 as a client simulator. All systems are
fresh installs and are not tuned for performance. The hard-
ening of the shadow system is accomplished by using the
Systrace [13] tool with the standard Apache policy file.
The policy file needed manual customization in order to
meet the special requirements of our system. All systems
are hosted on a VMware ESX Server 3 farm.

2http://httpd.apache.org/test/flood

Client PacketFilter ProductionSystem ShadowSystem

SYN (SEQ = x)

SYN (SEQ = y, ACK = x + 1)
(SEQ = x+ 1, ACK = y + 1)

An. Payl. (SEQ = x + 1, ACK = y + 1)
RST

SYN (SEQ = x)

SYN (SEQ = z, ACK = x + 1)
(SEQ = x + 1, ACK = z + 1)

An. Payl. (SEQ = x + 1, ACK = y + 1)
An. Payl. (SEQ = x + 1, ACK = y + 1 + d)

Resp. (SEQ = z + 1, ACK = x + 1 + len)
Resp. (SEQ = z + 1 - d, ACK = x + 1 + len)

Figure 2. Sequence diagram of the redirect process: If the first packet of a connection is marked as
anomalous, the redirection process is triggered by the packet filter by resetting the connection to the
production system and establishing a new connection to the shadow system. The packet filter has
to memorize the difference in the sequence numbers (here d = z − y) and adjust the corresponding
sequence numbers as shown in the lower part of the figure (An. Payload = anomalous payload).

3. Anomaly detection

Signature-based IDS provide effective defense against
known threats, yet they fail to detect attacks if appropriate
signatures are missing. Anomaly detection provides means
for identification of unknown attacks and hence comple-
ments the capabilities of misuse detection systems. As a
consequence anomaly detection methods and their applica-
tion have been widely studied in the domain of intrusion
detection, e.g., for identification of anomalous program be-
havior [4, 21, 10], packet headers [11, 12], network pay-
loads [8, 22, 19, 15] and HTTP requests [9, 6]. All of these
different approaches share the same concept – anomalies
are deviations from a model of normality – and only differ
in the considered data and the applied model of normality.
For our inline system we focus on packet payloads as ba-
sic data, since these can be efficiently obtained within the
packet filter framework and include the majority of todays
network attacks. To derive a model of normality from
packet payloads, we pursue an approach proposed in [15].
Payloads are first mapped to a vector space, such that nor-
mality and deviation thereof can be expressed geometrically
in terms of distances.

3.1. Embedding and similarity measures

A packet payload can be seen as a sequence of bytes, where
each byte takes a value from 0 to 255. To map a payload to

a vector, we move a sliding window of length n over its byte
sequence. At each position we obtain a so called n-gram (a
sub-sequence of length n). The set of all possible n-grams
can be defined as

S = {0, . . . , 255}n.

Using the set S we can define an embedding of a byte se-
quence x into a vector space by counting the occurrences
of all n-grams s ∈ S contained in x. The corresponding
embedding function φ is defined as

φ(x) = (φs(x))s∈S with φs(x) = occ(x, s),

where φ(x) is a vector with |S| dimensions and occ(x, s)
is a function returning the frequencies for the n-gram s in
x. Using this embedding function we can apply common
vectorial distances over packet payloads to assess their sim-
ilarity. Packets with similar payloads share the majority of
n-grams and thus yield a low distance value in the vector
space, while different payloads share only very few n-grams
and obtain large distance values. Table 1 lists common dis-
tance functions expressed using the embedding function φ.
The vector space induced by n-grams is high-dimensional,
e.g., for n = 4 it contains over 4.2 billion dimensions.
An explicit computation and comparison of vectors in such
high-dimensional spaces is infeasible. The number of n-
grams contained in a single payload, however, is linear in
its length. This sparsity of the embedding function φ can
be exploited to derive efficient methods for extraction and
comparison of the resulting vectors [16].

Distance function d(x, z)

Euclidean
√

∑

s∈S |φs(x) − φs(z)|2

Manhattan
∑

s∈S |φs(x) − φs(z)|

χ-Squared
∑

s∈S
|φs(x)−φs(z)|2

φs(x)+φs(z)

Canberra
∑

s∈S

|φs(x)−φs(z)|
φs(x)+φs(z)

Table 1. Distance functions for payloads.

3.2. Anomaly score

An embedding of packet payloads in a vector space allows
one to apply a large variety of anomaly detection techniques
developed for vectorial data. Due to space constraints, we
abstain from a review of relevant anomaly detection meth-
ods; after preliminary experimentation we have chosen a
simple but very efficient centroid anomaly detection model,
presented below.
The centroid model assumes that normal data lies in some
compact region in a space whereas anomalies fall outside
of this region. The model can be realized by the following
simple algorithm:

1. Training: collect examples of normal data packets
X = {x1, . . . , xn} and compute their mean z =
1
n

∑n

i=1 φ(xi). Computation of the mean can be
also implemented using efficient primitives developed
in [16].

2. Validation: determine the anomaly threshold tan. To
this end, collect an independent set of normal packets
X̃ = {x1, . . . , xm} and set tan so that the ratio of pack-
ets xi for which d(z, xi) > tan is less than or equal to
a pre-defined false-positive rate ν.

3. Deployment: for each incoming (possibly malicious)
packet y, compute the anomaly score:

score(y) =

{

normal, if d(z, y) ≤ tan

anomaly, otherwise

A similar model has been used in a variety of recent work
on intrusion detection, e.g. [15, 19, 20].

4. Experiments

In this section we analyze the runtime and the accuracy of
our inline anomaly detection system. The runtime is mea-
sured using a stress test utility for performance analysis of
the shadow system and the decision-making mechanisms.
The accuracy of our system is evaluated by comparing it to
a plain anomaly detection system on a real data set.

HTML HTML−systr PHP PHP−systr MYSQL MYSQL−systr
0

5

10

15

20

25

30

35

40

45

tim
e

(m
s)

Figure 3. Median processing time of the dif-
ferent services with and without Systrace.

4.1. Runtime

For the first experiment we investigate the performance im-
pact of our system on the network traffic. As mentioned in
Section 2.3 we focus on Apache as web service and use
the profile-driven HTTP load tester Flood. We simulate
one client accessing a specific service 5000 times in a row
to get a stable estimate of the runtime. To model a realistic
behavior of modern HTTP servers, the Apache web server
hosts three different types of services:

HTML returns just a static HTML page

PHP returns a dynamic, PHP generated page

MYSQL returns a dynamic, PHP generated page with val-
ues read from a MYSQL database.

All three services return the same amount of data. Figure
3 shows the median runtime of the different services on the
production server (i.e. without runningSystrace) and the
shadow server (i.e. with running Systrace). Since run-
time measurements are very noisy we have chosen a median
instead of a mean to get a robust estimate of the average run-
time. One can see that Systrace has almost no impact on
the simple processing of an HTML file, however it increases
the overhead significantly for both PHP and MYSQL re-
quests. The first two columns of Table 2 show the corre-
sponding runtime measurements for each service with and
without Systrace.
Furthermore, we are interested in the runtime impact of our
anomaly detection system. As described in Section 2.3 our
prototype is capable of executing just one action for all in-
coming requests to keep the measurements focused on the
impact of this single action. The right part of Table 2 shows
the runtime for the following actions:

queue – each packet of a connection is copied to the user
space process,

Type normal Systrace queue anomaly sink redirect-1st redirect-next
HTML 1.47 1.94 1.59 2.05 1.64 235.63 1.62
PHP 3.08 19.49 3.16 3.59 3.36 238.25 3.13
MYSQL 30.71 40.24 31.00 31.09 30.72 242.32 30.75

Table 2. Median processing time in milliseconds per request for different services and connection
handling methods.

anomaly – the distance of each packet to a centroid is cal-
culated and compared to tan,

sink – each packet is logged to the forensic sink,

redirect-1st – each connection is redirected as described in
Section 2.2,

redirect-next – translation of sequence numbers and ad-
dresses/ports for redirection of subsequent packets.

Since the static HTML service gives us the least variation
in the measurement (data not shown), we focus on this use
case first. The impact of HTML-queue and HTML-sink is
minimal compared to the normal processing time, just the
HTML-anomaly action adds a small overhead. The HTML-
redirect-1st action is extremely costly. But this comes as
no surprise since the redirection of each of the connections
involves the closing of the old connection to the produc-
tion system and re-establishing a new connection to the
shadow system. The runtime of HTML-redirect-next un-
derlines, that the main part of the cost is caused by the re-
establishment of the connection and the resending of the
anomalous packet. Measurements of the actions for PHP
and MYSQL have the same trend but show that the over-
head remains the same with the increasing application-layer
complexity of the service. Hence the relative overhead for
the actions diminishes with the complexity of the service:
While the anomaly detection induces a relative increase of
29% for plain HTML, this overhead reduces to 13% for
PHP and is negligible for MYSQL.
In summary, both parts of our system, namely the shadow
system represented by Systrace and the different actions,
do not pose an overwhelming burden to the overall system
performance. Only the redirection of a connection comes at
a high cost.

4.2. Accuracy

For the evaluation of the accuracy of our system we assem-
ble a real-live data set as follows: The data set contains
roughly 150k unsanitized connections totaling to roughly
240k packets from ten consecutive days taken from two
months of incoming HTTP traffic at our institute. We split
the data set into three equal parts of 50k connections each

for training, validation and testing of the anomaly detec-
tion algorithm. We inject 100 instances (470 connections
totaling to 2960 packets) of 28 different attack classes taken
from recent exploits in the Metasploit framework3 and
some Nessus4 HTTP scans.
Training, validation and deployment are carried out as de-
scribed in Section 3.2. The validation step with ν = 0.01 is
repeated for a variety of models: we test a total of four n-
gram models (n ∈ {2, 3, 4, 5}) and four distances (Manhat-
tan, Euclidean, Canberra, χ-Squared). The best validation
accuracy, measured by the AUC0.01 criterion (area under
the ROC-curve with the FP-rate ≤ 0.01) is attained by the
Canberra distance on 2-grams. This model is used in the
remaining experiments.
On our test data set a total number of 3102 (∼ 0.05%) pack-
ets with payload are redirected, 111 (∼ 0.001%) packets
with payload are logged to the forensic sink and 58,369
packets with payload are processed as normal. Therefore
the runtime of the complete system would be dominated by
the anomaly detection part.
We introduce the following ratios to look at some cases,
which are of special interest for the evaluation of our IPS:

broken =
normal conn. in SINK

all normal conn.
= 0.0008

jailed =
attack conn. in REDIRECT

all attack conn.
= 0.9760

The “broken” rate corresponds to the fraction of normal
connections incorrectly transferred to the sink. In our ex-
periment it is less than 0.1%. Manual inspection of these
connections reveals, that they are mainly caused by a spe-
cial feature of the Googlebot, which sends the “Connection:
close” part of a request as a separate packet, which gets
tagged as anomalous by the anomaly detector. Furthermore
we can find special browser anomalies. These cases could
easily be exploited for setting up a whitelist of signatures or
as special data set for the retraining of the anomaly detector.
This would help to decrease the number of wrongly broken
connections in the future.

3http://www.metasploit.com
4http://www.nessus.org

Type True positive rate False positive rate
AD 0.9939 ± 0.0030 0.0092 ± 0.0105
AD RED. 0.9952 ± 0.0022 0.0017 ± 0.0009

Table 3. Evaluation of intrusion detection
with anomaly detection only (AD) versus the
REDIRECT/SINK extension. The mean rates
over 10 runs and the 95% confidence limits
based on the standard error are given.

The “jailed” rate gives us an impression about the number
of true attacks redirected to the shadow system. We see, that
nearly all attacks are redirected, so we get an effective way
of containing attacks.
Finally we compare our system with the REDIRECT/SINK
extension against a plain anomaly detector, which inspects
the packets and decides for each packet on its own, whether
to drop it or not. This basic anomaly detector lacks our ex-
tension and therefore cannot incorporate knowledge about
the connection state and is not capable of redirecting pack-
ets to a hardened shadow system.
For the evaluation of our system we count every connection,
that is redirected to the shadow system as a right decision.
The rationale behind this is, that the shadow system answers
good traffic just the same as the production system, whereas
attack traffic is detected on the shadow system and will do
no harm. On the other hand normal traffic redirected to the
forensic sink counts as failure, while attacks in the sink con-
tribute to the true positives.
The results of this evaluation are denoted in Table 3. Our
system improves all categories and also shows a much
smaller standard error, indicating a more solid decision pro-
cess of the detector. Remarkably the Achilles’ heel of
anomaly detection, namely the false positive rate, is low-
ered by a factor of five by our system compared to the plain
anomaly detector.

5. Related work

The most widely known open-source intrusion prevention
system is Snort inline5. It provides inline interaction be-
tween a firewall and a Snort engine by using a packet queu-
ing library libipq instead of the packet capture library
libpcap. The decision-making in Snort inline is straight-
forward and is limited to packet dropping, using one of the
three modes: normal (drop), silent (sdrop) and loud (reject).
Packet-based signature-matching suffers from a number of
shortcomings. One of them is the inability to handle the
context of application-level protocols; another is the sus-
ceptibility to evasion attacks in the sense of Newsham and

5http://snort-inline.sourceforge.net

Pracek [14]. These deficiencies have motivated de Bruijn et
al. to design SafeCard, a Gigabit speed signature-based IPS
with full TCP re-assembly [3]. SafeCard uses a specialized
network interface card comprising a network processor and
8 stream processors for implementing various preprocess-
ing stages. By using parallelization of rule matching Safe-
Card is able to attain a rate of 940 Mbit/s.
Another potential realization of parallelism can be made on
a graphics processing unit (GPU) used in graphics cards in
most of the modern PCs. Their support for SIMD instruc-
tions (single instruction multiple data) is ideally suited for
signature matching algorithms when a single packet is to
be tested against multiple signatures. By porting a classical
Aho-Corasick algorithm to a GPU architecture, a through-
put of 2.3 Gbit/s has been recently reported for the Gnort
system [18]. It should be noted, however, that Gnort does
not address prevention mechanisms beyond those offered by
Snort.
Integration of anomaly detection techniques with intrusion
prevention mechanisms has been studied in the context of
web applications and clients. A reverse HTTP proxy pro-
posed by Valeur et al. [17] uses scores obtained from an
anomaly sensor [8] to forward requests to servers running
under different privileges. Anagnostakis et al. [1] propose a
“shadow honeypot” system in which suspicious HTTP traf-
fic is internally redirected to instrumented applications. Our
approach differs from these methods, in that our architec-
ture is service-independent and redirects traffic at the trans-
port layer. Thus, our architecture for inline anomaly detec-
tion allows for a generic and transparent integration with
existing network infrastructures.

6. Conclusions and further work

Our architecture for inline intrusion detection has proven to
be a useful system. By using anomaly detection it is ca-
pable of identifying even unknown attacks. The redirection
mechanism is a good tool to cope with the burden of normal
anomaly-based intrusion detection systems, namely produc-
ing a high number of false positives. Via the redirection to a
special hardened shadow system we are able to significantly
lower the number of false positives while maintaining the
good properties of the anomaly-based approach.
Performance measurements have shown, that our system is
ready for real-time performance. So our next step will be
to expand our prototype implementation into a complete,
self-contained system. The current implementation handles
nearly all processing of the data in user space. It would be
preferable to shift some parts of the system to the kernel
space to avoid excessive copying of packets from the kernel
to the user space. One simple extension would be to im-
plement the REDIRECT and SINK mechanisms as custom
Netfilter targets. Then all packets of a connection in

the FORENSIC SINK or REDIRECT state could be kept in
the kernel space, since further inspection by the anomaly
detector is not necessary. By putting the anomaly detec-
tion algorithm on a custom made FPGA or exploiting mas-
sive parallel execution on a graphics processors it would be
even possible to shift the anomaly detection component in
the kernel space.
We have seen that most of the attacks end up being redi-
rected to the shadow system. Since the redirection mech-
anism is costly it would be desirable to have a premature
drop criterion for extremely anomalous connections. This
could be achieved by e.g. having another threshold tdrop,
which is bigger than tan and gives a maximal anomaly score
for a packet, i.e. a packet having an anomaly score bigger
than tdrop and all subsequent packets of this connection are
dropped by the system instantaneously.
In general, our approach demonstrates the advantages of
integrating anomaly detection into an intrusion prevention
system, which – in combination with classic signature-
based defences – provides improved protection of network
environments.

Acknowledgment

This work was supported by the German Bundesminis-
terium für Bildung und Forschung (BMBF) under the
project ReMIND (FKZ 01-IS07007A).

References

[1] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis,
E. Markatos, and A. D. Keromytis. Detecting targeted at-
tacks using shadow honeypots. In Proc. of USENIX Security
Symposium, pages 129–144, 2005.

[2] M. Attig and J. Lockwood. A framework for rule process-
ing in reconfigurable network systems. In IEEE Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM’05), pages 225–234, 225.

[3] W. de Bruijn, A. Slowinska, K. van Reeuwijk, T. Hruby,
L. Xu, and H. Bos. Safecard: a gigabit IPS on the network
card. In Recent Adances in Intrusion Detection (RAID),
pages 311–330, 2006.

[4] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A
sense of self for unix processes. In Proc. of IEEE Sympo-
sium on Security and Privacy, pages 120–128, Oakland, CA,
USA, 1996.

[5] J. M. Gonzalez, V. Paxson, and N. Weaver. Shunting: a hard-
ware/software architecture for flexible, high-performance
network intrusion prevention. In Conference on Computer
and Communications Security (CCS), pages 129 – 149,
2007.

[6] K. L. Ingham and H. Inoue. Comparing anomaly detection
techniques for http. In Recent Adances in Intrusion Detec-
tion (RAID), pages 42 – 62, 2007.

[7] N. Jacob and C. Brodley. Offloading IDS computation to the
GPU. In Proc. of Annual Computer Security Applications
Conference (ACSAC), pages 371–380, 2006.

[8] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly
detection for network intrusion detection. In Proc. of ACM
Symposium on Applied Computing, pages 201–208, 2002.

[9] C. Kruegel, G. Vigna, and W. Robertson. A multi-model
approach to the detection of web-based attacks. Computer
Networks, 48(5), 2005.

[10] W. Lee and S. Stolfo. Data mining approaches for intrusion
detection. In Proc. of USENIX Security Symposium, 1998.

[11] M. Mahoney and P. Chan. PHAD: Packet header anomaly
detection for identifying hostile network traffic. Technical
Report CS-2001-2, Florida Institute of Technology, 2001.

[12] M. Mahoney and P. Chan. Learning rules for anomaly de-
tection of hostile network traffic. In Proc. of International
Conference on Data Mining (ICDM), 2003.

[13] N. Provos. Improving host security with system call policies.
In Proc. of USENIX Security Symposium, pages 257–272,
2003.

[14] T. Ptacek and T. Newsham. Insertion, evasion, and denial
of service: Eluding network intrusion detection. Technical
report, Secure Networks, Inc, 1998.

[15] K. Rieck and P. Laskov. Language models for detection of
unknown attacks in network traffic. Journal in Computer
Virology, 2(4):243–256, 2007.

[16] K. Rieck and P. Laskov. Linear-time computation of similar-
ity measures for sequential data. Journal of Machine Learn-
ing Research, 9(Jan):23–48, 2008.

[17] F. Valeur, G. Vigna, C. Kruegel, and E. Kirda. An anomaly-
driven reverse proxy for web applications. In Proc. of the
2006 ACM symposium on Applied computing, pages 361–
368, 2006.

[18] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos,
and S. Ioannidis. Gnort: High performance network intru-
sion detection using graphics processors. In Recent Adances
in Intrusion Detection (RAID), 2008.

[19] K. Wang, J. Parekh, and S. Stolfo. Anagram: A con-
tent anomaly detector resistant to mimicry attack. In Re-
cent Adances in Intrusion Detection (RAID), pages 226–248,
2006.

[20] K. Wang and S. Stolfo. Anomalous payload-based network
intrusion detection. In Recent Adances in Intrusion Detec-
tion (RAID), pages 203–222, 2004.

[21] C. Warrender, S. Forrest, and B. Perlmutter. Detecting intru-
sions using system calls: alternative data models. In Proc. of
IEEE Symposium on Security and Privacy, pages 133–145,
1999.

[22] S. Zanero and S. Savaresi. Unsupervised learning techniques
for an intrusion detection system. In Proc. of ACM Sympo-
sium on Applied Computing, 2004.

